




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元一次方程应用题分类汇总一元一次方程应用题归类汇集:形积变化问题、行船问题、工程问题、和差倍分问题、劳力调配问题、配套问题、分配问题、年龄问题、比赛积分问题、利润赢亏问题、储蓄问题、增长率问题、数字问题、古典数学、分段函数问题等(一)形积变化问题:解决这类问题,应从有关图形的面积、周长、体积等计算公式出发,根据题目中这些量的变化,建立相等关系,从而列出方程。有关公式如下:(1)长方形的周长、面积公式: C长方形=2(长+宽),s长方形=长宽 (2)长方体、圆柱的体积公式 :V长方体=长宽高,V圆柱=r2h(3)等积变形的相等关系:变形前的体积=变形后的体积1、学校建花坛余下24米长的小围栏,某班同学准备在自己教室前的空地上,建一个一面砖墙、三面围栏的长方形小花圃。(注意此题面积最大不是长与宽相等,因为这里24米只包括一个长两个宽,而不是两个长两个宽。此题需要代数分别讨论后,再比较得结论。)(1)请你设计一下,使长比宽多3米,算一算这时的面积。(2)请你再设法改变长与宽,扩大花圃的面积,并和其他同学比一比,看谁设计的花圃面积最大2、有一个底面积2020长方体玻璃杯(已满水)向一个内底面积165,内高是10的长方体铁盒倒水,当铁盒装满水时,玻璃杯的水的高度下降多少?3、某工厂锻造直径为60毫米,高20毫米的圆柱形零件毛坯,需要截取直径40毫米的圆钢多长?4:有一个底面积2020长方体玻璃杯(已满水)向一个内底面积165,内高是10的长方体铁盒倒水,当铁盒装满水时,玻璃杯的水的高度下降多少?(一)行程问题:(1)行程问题中的三个基本量及其关系:路程=速度时间S=vt(2)基本类型有 相遇问题; 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。1:甲、乙两站相距 480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)2、已知A、B相距60千米,甲位于A处,骑自行车,他的速度是每小时15千米,乙位于B处,开汽车,他的速度是每小时45千米。(1)若他们同时相向而行,则经几小时他们相遇?(2)若他们相向而行,小明先骑车0.5小时,问几小时他们相遇?(3)若他们同时同向而行,则经几小时乙追上甲?(4)若他们同向而行,甲先骑车1小时以后,问乙经几小时追上甲?(5)若他们同向而行,甲先骑车1小时以后,发现他的一个重要文件在乙那里,因此掉头去拿,同时乙也开车给甲送去,问甲经几小时和乙碰到?3、A、B两地相距1200千米。甲从A地、乙从B地同时出发,相向而行。甲每分钟行50千米,乙每分钟行70千米。两人在C处第一次相遇。问AC之间距离是多少?如相遇后两人继续前进,分别到达A、B两地后立即返回,在D处第二次相遇。问CD之间距离是多少?4.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为_。5. 某人从家里骑自行车到学校。若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?6、矿山爆破为了确保安全,点燃引火线后人要在爆破前转移到3000米以外的安全地带,引火线燃烧的速度是0.8厘米/秒,人离开的速度是5米/秒,问引火线至少需要多少厘米?(二)行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。流水问题有如下两个基本公式:顺水速度=船速+水速(V顺=V静+V水)逆水速度=船速-水速(V顺=V静-V水)1:一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。(三)工程问题:工程问题中的三个量及其关系为:工作总量=工作效率工作时间经常在题目中未给出工作总量时,设工作总量为单位1。1、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?2一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?3.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?4.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?(3)如果将两管同时打开,每小时的效果如何?如何列式?(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?5.有一个水池,用两个水管注水。如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。 如果甲、乙两管先同时注水20分钟,然后由乙单独注水。问还需要多少时间才能把水池注满? 假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。如果三管同时开放,多少小时才能把一空池注满水?6.整理一批图书,由一个人做要40小时完成。现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率相同,具体先安排多少人工作(四)和差倍分问题(生产、做工等各类问题)(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率”来体现。(2)多少关系:通过关键词语“多、少、和、差、不足、剩余”来体现。1:某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?2.已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,他买到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?3、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?(五)劳力调配问题:这类问题要搞清人数的变化.1.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?2甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。3.甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还多15人。求甲、乙两队原有人数各多少人?4.甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。(六)配套问题:1.某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)2机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?3包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片与和一张可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?4.某车间加工机轴和轴承,一个工人每天平均可加工15个机轴或10个轴承。该车间共有80人,一根机轴和两个轴承配成一套,问应分配多少个工人加工机轴或轴承,才能使每天生产的机轴和轴承正好配套。5.某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?6机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?(七)分配问题:1.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。2. 某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净。3.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?4.小明看书若干日,若每日读书32页,尚余31页;若每日读36页,则最后一日需要读39页,才能读完,求书的页数。(八)年龄问题:1:甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是_.2.小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄(九)比赛积分问题:1.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。已知某人有5道题未作,得了103分,则这个人选错了_道题。2.某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。某班与其他7个队各赛1场后,以不败的战绩积17分,那么该班共胜了几场比赛?(十)利润赢亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式:商品利润=商品售价商品进价=商品标价折扣率商品进价商品利润率=商品利润/商品进价商品售价=商品标价折扣率例.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?(十一) 储蓄问题 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税 利息=本金利率期数本息和=本金+利息利息税=利息税率(20%) 本金+利息-利息税=实得本利和1、某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)2、 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25,另一件亏损25,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?3、某储蓄户按定期二年把钱存入银行,年利率为2.25,到期后实得利息需要交纳20的利息税,到期实得利息450元,问该储户存入本金多少元?(十二)增长率问题:1.某化肥厂去年生产化肥3200吨,今年计划生产3600吨,今年计划比去年增产%2.某加工厂有出米率为70%的稻谷加工大米,现在加工大米100公斤,设要这种大米x公斤,则列出的正确的方程是。3.某印刷厂第三季度印刷了科技书籍50万册,而第四季度印刷了58万册,求季度的增长率是多少?4.甲、乙两厂去年完成任务的112%和110%,共生产机床4000台,比原来两厂任务之和超产400台,问甲厂原来的生产任务是多少台5.两个班组工人,按计划本月应共生产680个零件,实际第一组超额20、第二组超额15完成了本月任务,因此比原计划多生产118个零件。问本月原计划每组各生产多少个零件?(十三)数字问题:(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1a9,0b9,0c9)则这个三位数表示为:100a+10b+c。(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示。1.有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。(十四)古典数学:1.100个和尚100个馍,大和尚每人吃两个,小和尚两人吃一个,问有多少大和尚,多少小和尚。2.有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?(十五)分段函数问题:1.岳池县城某居民小区的水、电、气的价格是: 水每吨1.55元, 电每度0.67元, 天然气每立方米1.47元. 某居民户在2006年11月份支付款67.54元, 其中包括用了5吨水、35度电和一些天然气的费用, 还包括交给物业管理4.00元的服务费. 问该居民户在2006年11月份用子多少立方米天然气?12.已知:我市出租车收费标准如下:乘车里程不超过2公里的一律收费2元;乘车里程超过2公里的,除了收费2元外超过部分按每公里1.4元计费.(1)如果有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绵竹中学高2023级2024-2025学年度(下)期末模拟检测(政治)
- 记账实操-金属材料销售公司的账务处理
- 河南省名校大联考2024-2025学年高一下学期4月期中生物试卷(有答案)
- 2024-2025学年下学期高二生物人教版期末必刷常考题之群落及其演替
- 2024-2025学年下学期高二生物沪科版期末必刷常考题之保护环境实现人类与自然的和谐相处
- 山东统考新闻题目及答案
- 软件学院基础题目及答案
- 日语经济题目大全及答案
- 10《静电场中的能量》-2025高中物理水平合格考备考知识清单+习题巩固
- 2 9 函数模型及应用-2026版53高考数学总复习A版精炼
- 和美乡村示范村规范方案
- 2025年政治经济学考试题及答案回顾
- 政府采购评审专家考试真题库(带答案)
- (2025)国家版图知识竞赛(附含答案)
- 2025年高考志愿填报-12种选科组合专业对照表
- 《知识产权法学》一万字笔记
- 固体废物堆肥处理技术课件
- 脑卒中的诊断与治疗
- 2025甘肃省农垦集团有限责任公司招聘生产技术人员145人笔试参考题库附带答案详解析版
- 中国古茶树资源状况白皮书2025
- 牙科技术入股合作协议书
评论
0/150
提交评论