




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
s5如果算符、满足条件,求证:,证 利用条件,以左乘之得则有 最后得 。再以左乘上式得, 即则有 最后得 7(10分)求角动量z分量 的本征值和本征函数。解:波函数单值条件,要求当 转过 2角回到原位时波函数值相等,即:求归一化系数最后,得 Lz的本征函数910在一维势场中运动的粒子,势能对原点对称:,证明粒子的定态波函数具有确定的宇称。 证:在一维势场中运动的粒子的定态S-方程为 将式中的代换,得 利用,得 比较、式可知,都是描写在同一势场作用下的粒子状态的波函数。由于它们描写的是同一个状态,因此之间只能相差一个常数。方程、可相互进行空间反演 而得其对方,由经反演,可得, 由再经反演,可得,反演步骤与上完全相同,即是完全等价的。 乘 ,得 可见, 当时,具有偶宇称, 当时,具有奇宇称, 当势场满足时,粒子的定态波函数具有确定的宇称11一粒子在一维势场 中运动,求粒子的能级和对应的波函数。解:无关,是定态问题。其定态S方程 在各区域的具体形式为 : : :由于(1)、(3)方程中,由于,要等式成立,必须 即粒子不能运动到势阱以外的地方去。 方程(2)可变为 令,得 其解为 根据波函数的标准条件确定系数A,B,由连续性条件,得 由归一化条件 得 由 可见E是量子化的。对应于的归一化的定态波函数为 12设t=0时,粒子的状态为 求此时粒子的平均动量和平均动能。解: 可见,动量的可能值为 动能的可能值为 对应的几率应为 上述的A为归一化常数,可由归一化条件,得 动量的平均值为 # 13 一维运动粒子的状态是 其中,求: (1)粒子动量的几率分布函数; (2)粒子的平均动量。 解:(1)先求归一化常数,由 动量几率分布函数为 (2) 14在一维无限深势阱中运动的粒子,势阱的宽度为,如果粒子的状态由波函数 描写,A为归一化常数,求粒子的几率分布和能量的平均值。 解:由波函数的形式可知一维无限深势阱的分布如图示。粒子能量的本征函数和本征值为 动量的几率分布函数为 先把归一化,由归一化条件, 151516氢原子处在基态,求: (1)r的平均值; (2)势能的平均值;解:(1) 17 限高势阱中的粒子质量为的一个粒子在边长为立方盒子中运动,粒子所受势能由下式给出:(1)列出定态薛定谔方程,用分离变量法()求系统能量本征值和归一化波函数; 解:(1)定态薛定谔方程:分离变量:,;,基态:,基态波函数:18氢原子处于态中,问 (1)是否为能量的本征态?若是,写出其本征值。若不是,说明理由; (2)在中,测角动量平方的结果有几种可能值?相应几率为多少?19求能量表象中,一维无限深势阱的坐标与动量的矩阵元。解:基矢: 能量: 对角元: 当时, #2021设一体系未受微扰作用时有两个能级:,现在受到微扰的作用,微扰矩阵元为;都是实数。用微扰公式求能量至二级修正值。 解:由微扰公式得 得 能量的二级修正值为 22一维无限深势阱(0x 0时的粒子波函数;A. , , (2分) , (2分) B. (4分) (4分)28.一电荷为的线性谐振子受恒定弱电场作用。设电场沿方向:(1)用微扰法求能量至二级修正;(2)求能量的准确值,并和(1)所得的结果比较。解(1)荷电为的线性谐振子由于电场作用所具有的能量为,因为是弱电场,故与无电场时谐振子具有的总能量相比较,显然有令 ,显然,可以看作微扰,因此可以用微扰法求解。线性谐振子在外电场作用下的总哈密顿算符是无微扰时,线性谐振子的零级波函数是当体系处于第态时,考虑微扰的影响,则能量变为其中 其中利用递推公式故 利用厄密多项式的正交性可以看出上面的积分为零,即这表明能量一级修正为零。下面求能量的二级修正。为此计算矩阵元而 最后得能量的二级修正为故在准确到二级修正的情况下,总能量为(2)由于微扰能量是线性的,因此我们可以采用配成完全平方的方法,把哈密顿算符加以变形,从而求得能量的准确性。其中 定态薛定谔方程是而 令 ,则得故 这样算出的结果和用微扰法算出的结果完全一致。28若是电子的自旋算符,求a. =?b. a. 或 5分 b. 29307.6 一体系由三个全同的玻色子组成,玻色子之间无相互作用。玻色子只有两个可能的单粒子态。问体系可能的状态有几个?它们的波函数怎样用单粒子波函数构成?解:体系可能的状态有4个。设两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某大型集团管理咨询项目建议书
- 工业废弃地到生态校区的转型策略研究
- 工业旅游发展与城市形象塑造策略研究
- 工业机器人设计与操作流程
- 工业废物处理的先进技术介绍
- 工业机器人技术及发展趋势分析
- 工业污染防治及废弃物管理
- 工业自动化中的智能机器人技术探讨
- 工业涂装的环保要求与措施
- 工业设计中的创新理念与方法
- 2025年新疆维吾尔阿克苏地区沙雅县小升初数学检测卷含解析
- 变频器应用课件
- 人工智能在地球观测中的应用-深度研究
- 2023年中小学心理健康教育课程标准
- 煤矿各类重大灾害预兆
- 逻辑思维训练500题(带答案)
- 政务公开培训课件模板
- 盐城市首届“金联杯”防范和打击非法金融活动竞赛练习卷含答案(一)
- 新材料与绿色制造的关系研究
- 顶管工作井最小尺寸的确定及顶力计算书
- 烤烟房买卖合同范文
评论
0/150
提交评论