大学物理双语版奥本汉姆课件Chap27To29-EMagIndu.ppt_第1页
大学物理双语版奥本汉姆课件Chap27To29-EMagIndu.ppt_第2页
大学物理双语版奥本汉姆课件Chap27To29-EMagIndu.ppt_第3页
大学物理双语版奥本汉姆课件Chap27To29-EMagIndu.ppt_第4页
大学物理双语版奥本汉姆课件Chap27To29-EMagIndu.ppt_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter27to29Electro MagneticInductionandField TheLawofElectro MagneticInductionMotional 动生 Induced 感生 EMFSelfandMutualInduction 自感与互感 EnergyStoredinaMagneticFieldDisplacementCurrent Ampere Max LawMaxwell sEquation 27 1 Electro MagneticInduction Law AfterOersted sdiscoveryin1820 asteadycurrentproducedasteadymagneticfield Experimentalistseagerlysoughttodemonstratethereverse asteadymagneticfieldcouldcreateasteadyelectriccurrent MichaelFaraday 1791 1867 Englishphysicistandchemist whoseexperimentscoveredawiderangeofelectrical magnetic opticalandchemicalphenomena Heisbestknownforhisfamousdiscoveryofelectro magneticinduction 1 Faraday slawofinduction P630 Commonpoints Fluxofchangesandelectromotiveforce EMF 电动势 occurs whereismagneticfluxthroughareaA voltage V Faraday slaw ForacoilofNturns thecoiliscloselypacked thesamemagneticfluxpassesthroughalltheturns thetotalEMFinducedinthecoilis coilofNturns SIunit 1weber 1Wb 1T m2 ThestepstodeterminethedirectionofibyFaraday slaw 1 Freelysetapositivenormaldirectionofaloop 2 If 3 If 1 Iftheloop sresistanceisR theninducedcurrentintheloopis 2 Thechargesintheloop 通过回路的电量 is Thechargesqisdirectlyproportionalto andindependentond dt HeinrichFriedrichEmilLenz aGermanphysicist in1834heproposedthislaw original Self loop magneticflux LookatP631 please Example Solution Question a Themagnitude directionof b Thecurrentintheloopatt 10s a b clockwise AsFig aconductingloop r 0 2m Solution Given Question Themagnitude directionof Direction withtime inducedemfiscounterclockwise Example Aconductingloop 27 2 Motional InducedEMF 1 Motionalelectromotiveforce P634 Theconductingrodabisslidingalongthemetalrailsandacross Direction fromatob Microscopicview EMFisinducedbyLorrentz force 3 coincideswithFaraday slaw uniform 1 MotionalEMFis innature theworkdonebyLorentz sforcetotransferaperunitpositivechargefrompointatob 2 ThismotionalEMFisnotpresentinastaticsystem Themovingpartisanalogoustoachemicaldeviceforgeneratingelectriccurrent fromlowelectricpotentialtohigh 5 Relationshipofwork energy tomaintainmotionofconductor requiringappliedforcetodopositivework Theenergytransferedtotheclosedloop magnetsystemviatheforceendsupinthermalenergy外力克服安培力作功 转化为电能 Lookatandworkoutexamples27 3and27 4byyourselfafterclass 4 TheconditioncreatingmotionalEMF movingconductormustcutthemagneticfieldlines So wecanpicturethemotionalEMFasthetimerateofcuttingthemagneticfieldlines AconductingwireoflengthLrotatesaboutOwith inuniformmagneticfieldwhichisperpendiculartorotatingplane Find a b WhichpointhashigherEMF PointOhasahigherEMF Solution WayI WayII MakingupaclosedloopandusingFaraday slaw Example Solution Asthefigure astraightwireoflengthl MN isputhorizontallyandfree fall Whatisthepotentialdifferenceoftwosidethewireattimet 经时间t导线两端电位差 PointMhasahigherEMF Example WorkoutProblem27ofP641afterclass Settingxaxisasthefigure 2 InducedelectricfieldsandEMF P635 Inducedelectricfieldarisingfromthechangingofmagneticfieldwiththetime ConnectwiththelawofFaraday InducedEMFequalsthecirculationofinducedelectricfield 感生电动势等于感生电场场强的环流 Takenotes Achangingmagneticfieldproducesanelectricfieldevenifthereisnoconductingloop 1 Italsohasactingforceonchargedparticleasstaticelectricfielddoes 感生电场对电荷有作用力 2 Itisoriginfromvaryingmagneticfield 3 Comparingwiththelooplawofelectrostaticfield wemayfindthatinducedfieldisanotherkindofelectricfield Thesourceofarechargesandchanging respectively isacurlelectricfield 有旋电场 itslinesareclosed noheadandnotail nonconservativefield andnopotential Solution AlongsolenoidofradiusR findthedistributionofwhenthemagneticfieldinsideofitvarieswithtime dB dt C Fromsymmetry istangentialdirection freelyassumepositivedirectionofandLasthefigure Itcanbecalculatedwhenhassomesymmetrybyusingequation Example27 5 1 Ifr R inside 2 Ifr R outside IfdB dt 0 directionofisthesameasassumed counterclockwise otherwise opposite Notethesign 27 3 Self Induction MutualInduction TheprocessthataninducedEMFappearinanycoilinwhichthecurrentischangingiscalledself induction 由于自己线路中的电流的变化而在自己的线路中产生感应电流的现象 自感现象 1 Self Induction 自感应 P645 IfweestablishacurrentIinthewindings themagneticfluxlinkageN isproportionaltoI Inductancedefined ThenthecoefficientLisdefinedastheinductanceoftheinductor 1henry 亨利 1H 1T m2 A TheinductanceLisameasureofmagneticfluxlinkageproducedbytheinductorperunitofcurrent Itrelatedtothegeometryofthewindingsandmagneticmedium ItsSIunit TheEMFappearsinself inductioniscalledself inducedEMF ItobeysFaraday slawofinduction self inducedEMF Theminussignindicatesthattheself inducedEMFhastheorientationsuchthatitopposesthechangeinI Inductanceofasolenoid Consideringthecaseasfigure N l Magneticfieldinsidethesolenoidoflengthlis Magneticfluxlinkage Theinductanceperunitlengthforalongsolenoidnearitscenter InductanceL likecapacitance dependsonlyonthegeometryofthedevice Hey Calculatingself inductanceofco axiswireinunitlength 同轴电缆单位长度的自感 Solution Example 2 Mutual induction 互感应 P643 Asteadycurrentinonecoilwillsetupamagneticfluxlinkingtheothercoil Ifcurrentchangeswithtime anEMFappearsinthesecondcoil Theprocessiscalledmutualinduction DefinethemutualinductanceM21ofcoil2withrespecttocoil1as 线圈1对2的互感系数 If byexternalmeans wecauseI1tovarywithtime then Bysimilarway interchangingtherolesofcoils1and2 AccordingtoFaraday slaw withaminussigntoindicatedirection compareto TheEMFinducedineithercoilisproportionaltotherateofchangeofcurrentintheothercoil Itcanbeproved TheSIunitforM asforL isalsotheHenry Ingeneral Mshouldbemeasuredinexperiments AcoilofN2turnswoundasshownaroundpartofatoroidofN1turns Thetoroid sinner outerradiusareaandb itsheightish ShowMforthetoroid coilcombination Example Solution Lookatexample28 1ofP644afterclass 27 4 EnergyStoredinaMagneticField P647 Recalltheenergystoredinelectricfield UsingOhm sonit Energyofcapacitor Densityofenergy Togetmagneticenergy considersuchaRLcircuit MultiplyeachtermbyIdtandintegrate wehave Energystoredbyaninductor Ontheotherhand ifUBisknown Lcanbegottenfromthisequation Takelongsolenoidasanexample Theenergystoredperunitvolumeofthefield densityofenergy 能量密度 is magneticenergydensity Ingeneral onecanuse Discussexample28 5inP648asfollows 27 5 DisplacementCurrent MaxwellEquations 1 Displacementcurrent 位移电流 P661 TheintroductionofdisplacementcurrentisthebasisonwhichMaxwell EnglishphysicistJamesClerkMaxwell equationsaresetup UsingAmpere looplawtoS1 andS2 Theyarecontradict Tomakethemcoordinate weneedtoconsiderthecontinuityofcurrent oneget and whenS1farfromplates UsingGauss lawtotheclosedsurfacemadeofS1 S2 Realcurrentinconductingwire changingrateofelectricdisplacementfluxtotimethroughsurfaceS2 From So atnon steadycurrent Amperelawcanberewrittenas Ampere Maxwelllaw 1 Fictitious 假想的 displacementcurrentbetweentheplatesisassociatedwiththatchangingE field 通过某个面积的位移电流为通过该面积的电位移通量对时间的变化率 2 ThedisplacementcurrentgivenbyMaxwellis innature thatachangingelectricfluxwillalwaysinduceamagneticfieldwheneveritoccurs 3 AlthoughIandIdareequivalentatproducingmagneticfield theyaredifferentinthatdisplacementcurrentisvaryingelectricfield位移电流是变化的电场 可以存在于一切物质或真空中而传导电流是导体中电荷的定向运动 LookatExample29 1 please 2 Maxwell sequations P667 Maxwell sEquationswrittenontheassumptionthatnodielectricormagneticmaterialsarepresent Takenotes Theassumptionofdisplacementcurrentandinducedmag

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论