



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
椭圆作图范例椭圆是平面上到两定点的距离之和为常值的点之轨迹, 也可定义为到定点距离与到定直线间距离之比为常值的点之轨迹。它是圆锥曲线的一种,即圆锥与平面的截线。 椭圆在方程上可以写为标准式x2/a2+y2/b2=1,它还有其他一些表达形式,如参数方程表示等等。椭圆在开普勒行星运行三定律中扮演了重要角色,即行星轨道是椭圆,以恒星为焦点。 椭圆的第一定义tuyun 平面内与两定点F、F的距离的和等于常数2a(2a|FF|的动点P的轨迹叫做椭圆。 即:PF+PF=2a 其中两定点F、F叫做椭圆的焦点,两焦点的距离FF叫做椭圆的焦距。 椭圆的第二定义平面上到定点F距离与到定直线间距离之比为常数的点的集合(定点F不在定直线上,该常数为小于1的正数) 其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是X=a2/c)。 椭圆的其他定义根据椭圆的一条重要性质也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况 计算机图形学约束椭圆必须一条直径与X轴平行,另一条直径Y轴平行。不满足此条件的几何学椭圆在计算机图形学上视作一般封闭曲线。 标准方程 高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。 椭圆的标准方程有两种,取决于焦点所在的坐标轴: 1)焦点在X轴时,标准方程为:x2/a2+y2/b2=1 (ab0) 2)焦点在Y轴时,标准方程为:x2/b2+y2/a2=1 (ab0) 其中a0,b0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当ab时,焦点在x轴上,焦距为2*(a2-b2)0.5,焦距与长.短半轴的关系:b2=a2-c2 ,准线方程是x=a2/c和x=-a2/c 又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx2+ny2=1(m0,n0,mn)。既标准方程的统一形式。 椭圆的面积是ab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acos , y=bsin 标准形式的椭圆在x0,y0点的切线就是 : xx0/a2+yy0/b2=1 3公式椭圆的面积公式S=(圆周率)ab(其中a,b分别是椭圆的长半轴,短半轴的长). 或S=(圆周率)AB/4(其中A,B分别是椭圆的长轴,短轴的长). 椭圆的周长公式椭圆周长没有公式,有积分式或无限项展开式。 椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如 L = 0,/24a * sqrt(1-(e*cost)2)dt2(a2+b2)/2) 椭圆近似周长, 其中a为椭圆长半轴,e为离心率 椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则 e=PF/PL 椭圆的准线方程 x=a2/C 椭圆的离心率公式 e=c/a(e2c) 椭圆的焦准距 :椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a2/C)的距离,数值=b2/c 椭圆焦半径公式 PF1=a+ex0 PF2=a-ex0 椭圆过右焦点的半径r=a-ex 过左焦点的半径r=a+ex 椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,数值= b2/a 点与椭圆位置关系 点M(x0,y0) 椭圆 x2/a2+y2/b2=1 点在圆内: x02/a2+y02/b21 点在圆上: x02/a2+y02/b2=1 点在圆外: x02/a2+y02/b21 直线与椭圆位置关系 y=kx+m x2/a2+y2/b2=1 由可推出x2/a2+(kx+m)2/b2=1 相切=0 相离0无交点 相交0 可利用弦长公式:A(x1,y1) B(x2,y2) |AB|=d = (1+k2)|x1-x2| = (1+k2)(x1-x2)2 = (1+1/k2)|y1-y2| = (1+1/k2)(y1-y2)2 椭圆通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)公式:2b2/a 椭圆的斜率公式过椭圆上x2/a2+y2/b2=1上一点(x,y)的切线斜率为 -(b2)X/(a2)y 4椭圆参数方程的应用求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解 相关性质 由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。 例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义): 将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。 设两点为F1、F2 对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2 则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2 由定义1知:截面是一个椭圆,且以F1、F2为焦点 用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆 椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)。 -关于圆锥截线的某些历史:圆锥截缐的发现和研究起始于古希腊。 Euclid, Archimedes, Apollonius, Pappus 等几何学大师都热衷于圆锥截缐的研究,而且都有专著论述其几何性质,其中以 Apollonius 所著的八册圆锥截缐论集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲缐的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲缐;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler 行星运行三定律的发现才知道行星绕太阳运行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler 三定律乃是近代科学开天劈地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。由此可见,圆锥截缐不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。 例:已知椭圆C:x2/a2+y2/b2=1(ab0)的离心率为6/3,短轴一个端点到右焦点的距离为3. (1)求椭圆C的方程. (2)直线l:y=x+1与椭圆交于A,B两点,P为椭圆上一点,求PAB面积的最大值. (3)在(2)的基础上求AOB的面积. 一 分析短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义),可知a=3,又c/a=6/3,代入得c=2,b=(a2-c2)=1,方程是x2/3+y2/1=1, 二 要求面积,显然以ab作为三角形的底边,联立x2/3+y2/1=1,y=x+1解得x1=0,y1=1,x2=-1.5,y2=-0.5.利用弦长公式有(1+k2)x2-x1(中括号表示绝对值)弦长=32/2,对于p点面积最大,它到弦的距离应最大,假设已经找到p到弦的距离最大,过p做弦的平行线,可以 发现这个平行线是椭圆的切线是才会最大,这个切线和弦平行故斜率和弦的斜率=,设y=x+m,利用判别式等于0,求得m=2,-2.结合图形得m=-2.x=1.5,y=-0.5,p(1.5,-0.5), 三 直线方程x-y+1=0,利用点到直线的距离公式求的32/2,面积1/2*32/2*32/2=9/4, 5历史椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明) 关于圆锥截线的某些历史:圆锥截线的发现和研究起始于古希腊。 Euclid, Archimedes, Apollonius, Pappus 等几何学大师都热衷于圆锥截线的研究,而且都有专著论述其几何性质,其中以 Apollonius 所著的八册圆锥截线论集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲线的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲线;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler 行星运行三定律的发现才知道行星绕太阳运行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler 三定律乃是近代科学开天劈地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。由此可见,圆锥截线不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。 椭圆手工画法(1):画长轴AB,短轴CD,AB和CD互垂平分于O点。 (2):连接AC。 (3):以O为圆心,OA为半径作圆弧交OC延长线于E点。 (4):以C为圆心,CE为半径作圆弧与AC交于F点。 (5):作AF的垂直平分线交CD延长线于G点,交AB于H点。 (6):截取H,G对于O点的对称点H,G。 (7):H,H为长轴圆心,G,G为短轴原心。 (1):画长轴AB,短轴CD,AB和CD互垂平分于O点。 (2):连接AC。 (3):以O为圆心,OA为半径作圆弧交OC延长线于E点。 (4):以C为圆心,CE为半径作圆弧与AC交于F点。 (5):作AF的垂直平分线交CD延长线于G点,交AB于H点。 (6):截取H,G对于O点的对称点H,G (7):H,H为长轴圆心,分别以HB、HA为半径;G,G为短轴原心,分别以GC、GD为半径。 用一根线或者细铜丝,铅笔,2个图钉或大头针画椭圆的方法:先画好长短轴的十字线,在长轴上以圆点为中心先找2个大于短轴半径的点,一个点先用图钉或者打头针栓好线固定住,另一个点的线先不要固定,用笔带住线去找长短轴的4个顶点,此步骤需要多次定位,直到都正好能于顶点吻合后固定住这2个点,用笔带住线,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 菏泽中考试题及答案
- 高压进网理论考试题及答案
- 山东中考语文试题及答案
- 现代文学史试题及答案
- 合同编考试题及答案
- 国乐进社区活动方案
- 商务厅合作活动方案
- 团扇活动策划方案
- 团委清明活动策划方案
- 商务演讲活动策划方案
- 2023年黄石市黄石港区社区工作者招聘考试真题
- 国家开放大学化工节能课程-复习资料期末复习题
- 汽车行业焊接车间工位缩写
- DB61-T 5068-2023 钢桥面改性聚氨酯混凝土铺装应用技术规程
- 基于水凝胶模板原位合成磷酸钙类骨组织修复材料及表征
- 畜牧兽医毕业论文名字
- 中国联通5G毫米波技术白皮书
- 医疗人文关怀
- 系统规划与管理师-辅助记忆口诀
- 预防接种异常反应监测与处理
- 输液发热反应的护理流程图
评论
0/150
提交评论