



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4-4 系统性能分析与估算本节将通过示例,说明如何应用根轨迹法分析系统性能。【4-7】一单位反馈系统的开环传递函数为试画出闭环系统的根轨迹。解 此系统有三个开环极点:,。由常规根轨迹法则作出根轨迹如图4-16。由图4-16可见,有两条根轨迹线始终位于平面的右半平面,即闭环系统始终有两个右极点,这表明无论取何值,此系统总是不稳定的,这样的系统,称为结构不稳定系统。如果在系统中附加一个开环零点,为负的实数零点,用来改善系统动态性能,则系统开环传递函数变为将设置在之间,则附加零点后的系统根轨迹,如图4-17所示。很明显,当由变化时,这三条根轨迹线均处在平面的左半平面,即无论取何值,系统总是稳定的。而且闭环系统总有一对靠近虚轴的共轭复数极点,即系统的主导极点。所以,无论取何值,系统的阶跃响应都是衰减振荡的,且振荡频率随增大而增大。只要适当选取值,就可以得到满意的系统动态性能。若附加零点,取,则系统根轨迹如图4-18所示,由图4-18可见,系统仍有两条根轨迹分支始终位于平面的右半平面,系统仍无法稳定。因此,引入的附加零点要适当,才能对系统的性能有所改善。【例48】一单位反馈系统,其开环传递函数为:试作根轨迹,分析对系统性能的影响,并求出系统最小阻尼比所对应的闭环极点。解 开环传递函数有二个极点,一个零点。可以证明,此类带零点的二阶系统的根轨迹其复数部分为一个圆,其圆心在开环零点处,半径为零点到分离点的距离。分离点为系统的根轨迹如图4-19所示利用幅值条件(4-7)式求得分离点、处的根轨迹增益、为: =0.343;可见,当根轨迹增益在范围内时,闭环系统为两个负实数极点,系统阶跃响应为非周期性质。当根轨迹增益在范围内,闭环系统为一对共轭复数极点,其阶跃响应为振荡衰减过程。当根轨迹增益在范围内,闭环系统又为两个负实数极点,其阶跃响应又为非周期性质。下面求解系统最小阻尼比所对应的闭环极点。在图4-19中,过坐标原点作根轨迹圆的切线,此切线与负实轴夹角的余弦,即为系统的最小阻尼比因此,最小阻尼比为所对应的闭环极点可从图4-19直接得到该点对应的值可用幅值条件求得:。由于最小阻尼比为0.707,故系统阶跃响应具有较好好的平稳性、快速性。【例4-9】某非最小相位系统开环传递函数为试作系统根轨迹。解 所谓非最小相位系统,就是指在平面的右半平面内具有开环零、极点的系统。反之,则为最小相位系统。如前面分析的系统均属于最小相位系统。绘制非最小相位系统的根轨迹一般与绘制常规根轨迹法则相同。(在非最小相位系统中,虽为负反馈系统,但有时会出现形式的闭环特征式,这时应按零度根轨迹法则绘制。)系统根轨迹:(1),则有两条根轨迹线。(2)实轴上根轨迹区段和。(3)渐近线。(4)分离点坐标解得分离点上的根轨迹增益分别求得为和。(5)根轨迹与虚轴的交点解得 根据上述分析计算,绘制系统根轨迹如图4-20所示。当变化时,对阶跃响应的影响情况,读者可自行分析。【例4-10】单位反馈控制系统开环传递函数为式中可自行选定,试作变化时的根轨迹。解 本例实际上是两个参数同时变化时的根轨迹。解题步骤:(1)写出以变化时的等效开环传递传递函数。系统闭环特征方程为(4-31)(2)确定等效传递函数随变化时特征根的轨迹。首先要确定式(4-31)的特征根,为此,作如下传递函数(4-32)所对应的闭环特征方程的根轨迹,即的极点变化轨迹,如图4-21(a)所示。当时,的极点分别为0.4252.235和3.85。(3)在特定值下,做出控制系统在变化时的根轨迹。把特定(如)值及相应的的极点(和0.4252.235)代入式(4-31)得作的根轨迹,如图4-21()中的曲线所示。(4)作不同特定值,如时的根轨迹簇,如图4-21()中的和曲线所示。图4-21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年社会发展与公共政策硕士课程期末考试题及答案
- 2025年教师资格考试试卷及答案
- 2025年机电一体化技术考试试题及答案
- 2025年动物医学专业基础知识考试试题及答案
- 2025年翻译专业学位考试试卷及答案
- 村级防溺水安全宣传工作会议记录
- 特殊事项报告管理制度
- 特殊工种公司管理制度
- 特殊时期财务管理制度
- 特殊病历护理管理制度
- 矿灯管理工培训课件
- 村医培训死因监测课件
- 玻璃幕墙清洗施工方案
- 管理授权手册7.28
- lcd制造工艺流程
- 2024届北京市石景山区七年级生物第二学期期末学业水平测试模拟试题含解析
- 《数据中心液冷系统技术规程》
- 人教版八年级日语单词表
- 建筑施工安全管理及扬尘治理检查投标方案(技术方案)
- 医院耗材SPD解决方案(技术方案)
- 全国高中青年数学教师优质课大赛一等奖《导数的概念》课件
评论
0/150
提交评论