二次函数的图像和性质(二) (2).doc_第1页
二次函数的图像和性质(二) (2).doc_第2页
二次函数的图像和性质(二) (2).doc_第3页
二次函数的图像和性质(二) (2).doc_第4页
二次函数的图像和性质(二) (2).doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内容 二次函数的图像和性质教学目的1、 理解二次函数与一元二次方程的关系2、 会观察图像,确定a,b,c,的符号,能从图像上认识二次函数的性质3、 掌握二次函数的平移,会构建二次函数模型解决以二次函数为基础的综合型题重难点二次函数图象及其性质,能把相关应用问题转化为数学问题,灵活运用二次函数分析和解决简单的实际问题教学过程 一般地,如果y=ax2+bx+c(a,b,c是常数且a0),那么y叫做x的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据当b=c=0时,二次函数y=ax2是最简单的二次函数二次函数y=ax2+bx+c(a,b,c是常数,a0)的三种表达形式分别为:一般式:y=ax2+bx+c,通常要知道图像上的三个点的坐标才能得出此解析式;顶点式:y=a(xh)2+k,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a(xx1)(xx2),通常要知道图像与x轴的两个交点坐标x1,x2才能求出此解析式;对于y=ax2+bx+c而言,其顶点坐标为(,)对于y=a(xh)2+k而言其顶点坐标为(h,k)由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点二次函数y=ax2+bx+c的对称轴为x=,最值为,(k0时为最小值,k0)个单位得到函数y=ax2k将y=ax2沿着x轴(右“”,左“”)平移h(h0)个单位得到y(xh)2在平移之前先将函数解析式化为顶点式,再来平移,若沿y轴平移则直接在解析式的常数项后进行加减(上加下减),若沿x轴平移则直接在含x的括号内进行加减(右减左加)在画二次函数的图像抛物线的时候应抓住以下五点:开口方向,对称轴,顶点,与x轴的交点,与y轴的交点抛物线y=ax2+bx+c的图像位置及性质与a,b,c的作用:a的正负决定了开口方向:当a0时,开口向上,在对称轴x=的左侧,y随x的增大而减小;在对称轴x=的右侧,y随x的增大而增大,此时y有最小值为y=,顶点(,)为最低点;当a0时,开口向下,在对称轴x=的左侧,y随x的增大而增大,在对称轴x=的右侧,y随x的增大而增大,此时y有最大值为y=,顶点(,)为最高点a的大小决定了开口的宽窄,a越大,开口越小,图像两边越靠近y轴,a越小,开口越大,图像两边越靠近x轴a,b的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y轴,当a,b同号时,对称轴x=0,即对称轴在y轴右侧,垂直于x轴正半轴;c的符号决定了抛物线与y轴交点的位置,c=0时,抛物线经过原点,c0时,与y轴交于正半轴;c0 B b0 C c0 D abc0例4、2011台湾全区,28)图(十二)为坐标平面上二次函数的图形,且此图形通过(1 , 1)、(2 ,1)两点下列关于此二次函数的叙述,何者正确? A y的最大值小于0 B当x0时,y的值大于1C当x1时,y的值大于1 D当x3时,y的值小于0例5、(2011甘肃兰州,9,4分)如图所示的二次函数的图象中,刘星同学观察得出了下面四条信息:(1);(2)c1;(3)2ab0;(4)a+b+c0。你认xy-11O1为其中错误的有A2个B3个C4个D1个例6、(2011山东济宁,8,3分)已知二次函数中,其函数与自变量之间的部分对应值如下表所示:x01234y41014点A(,)、B(,)在函数的图象上,则当时,与的大小关系正确的是A B C D 例7、(2011四川凉山州,12,4分)二次函数的图像如图所示,反比列函数与正比列函数在同一坐标系内的大致图像是( )第12题OxyOyxAOyxBOyxDOyxC例8、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论