




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次根式混合运算第1课时整体目标教学目标一知识与技能在有理数的混合运算及整式的混合运算基础上,使学生了解二次根式的混合运算与以前所学知识的联系,在比较中得到方法,并能熟练地进行二次根式的混合运算.二过程与方法1.对二次根式的混合运算与整式的混合运算及数的混合运算作比较,注意运算顺序及运算律在计算过程中的作用.2.通过引导,在多解中进行比较,寻求有效快捷的计算方法.三情感与态度1.学会知识间的类比,进一步体会数学学习方法的重要性.2.通过独立思考与小组讨论,培养良好的学习态度.四教学重点与难点【重点】能熟练进行二次根式的混合运算.【难点】灵活运用因式分解、约分等技巧,运用运算律使计算简便.五教学准备【教师准备】教学中出示的教学插图和例题.【学生准备】复习总结二次根式的加减运算的方法.六教学过程1.新课导入导入一:教师节快要到了,为了表示对老师的敬意,小波做了两张大小不同的正方形壁画准备送给老师.其中一张面积为800 cm2,另一张面积为4500 cm2,他想如果再用金彩带镶上边会更漂亮.他现在有一条长1.2 m的金彩带,请你帮忙算一算,他的金彩带够用吗?若不够用,还需要购买多长的金彩带?引导学生计算所需金彩带的总长,列式为 ,思考计算方法.如何计算呢?通过本节课的学习,我们就会很容易解决这一问题.设计意图创设问题情境,激起学生的探索兴趣和求知欲望.导入二:让我们一起来回顾一下二次根式的基本运算,你会计算下面几个式子吗?计算:(1)(3x22x2)4x;(2)(4x22xy)(2xy);(3)(3a2b)(3a2b);(4)(2x1)2(2x1)2.学生计算交流后,提出问题:应怎样计算?乘法分配律依然可以应用吗?上面的四个式子分别用到了我们学过的那些运算规律和公式?学生回答老师完善本节课我们重点探究整式的乘法法则和公式在二次根式的混合运算中仍然适用和二次根式的混合运算的问题.设计意图通过复习二次根式的运算,自然过渡到二次根式的混合运算,明确本节课的目标.2.新知构建1.探究整式的乘法法则和公式在二次根式的混合运算中仍然适用思路一过渡语下面我们看看,整式乘法法则和公式在二次根式混合运算中仍然适用吗?(1)怎样计算()?引导学生回忆学习过的整式乘法中的乘法分配律,仿照a(b+c)=ab+ac尝试计算,并全班交流.()=+(2)怎样计算()()?引导学生回忆整式乘法公式,仿照(a+b)(a-b)=a2-b2尝试计算,并全班交流.()()=()2-()2=5-3=2(3). (+)2和()2又该如何计算呢?学生讨论,用完全平方公式计算.(+)2=()2+2+()2=3+2+2=5+2()2=)2-2+)2=32-2+2=5-2进一步引导学生总结:整式的乘法法则和公式在二次根式的混合运算中仍然适用.设计意图用类比的方法探索二次根式混合运算的特点,使学生弄清楚新旧知识的区别和联系.让学生亲自动手,进行实验、探究,得出结论,激发学生的求知欲望.思路二(1)请同学们完成下列各题:计算:(2x+y)zx;(2x2y+3xy2)xy;(2x+3y)(2x-3y);(2x+1)2+(2x-1)2.学生计算后,老师点评.这些内容是对八年级上册整式运算的再现.主要有:单项式单项式;单项式多项式;多项式多项式;多项式单项式;完全平方公式的运用;平方差公式的运用.如果把上面的x,y,z改成二次根式呢?以上的运算规律是否仍成立呢?仍成立.整式运算中的x,y,z是一种字母,它的意义十分广泛,可以代表所有的式子,当然也可以代表二次根式,所以整式中的运算规律也适用于二次根式.下面,我们来验证一下用乘法分配律计算(+).(2+3)=(2+3)=5=10(2+3)=2+3=4+6=10.引导学生观察,发现:这两种方法的结果是相同的.在二次根式运算中,乘法分配律依然可以应用.(2)自己举例验证平方差公式和完全平方公式是否可以应用于二次根式的运算.小组讨论后,全班交流.知识拓展(1)适用于二次根式的乘法公式:平方差公式:(a+b)(a-b)=a2-b2;完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.(2)乘法公式的变式:位置变化:(x+y)(-y+x)=x2-y2;符号变化:(-x+y)(-x-y)=(-x)2-y2=x2-y2;指数变化:(x2+y2)(x2-y2)=x4-y4;系数变化:(2a+b)(2a-b)=4a2-b2;换式变化:xy+(z+m)xy-(z+m)=(xy)2-(z+m)2=x2y2-(z2+2zm+m2)=x2y2-z2-2zm-m2;增项变化:(x-y+z)(x-y-z)=(x-y)2-z2=x2-2xy+y2-z2;连用公式变化:(x+y)(x-y)(x2+y2)=(x2-y2)(x2+y2)=x4-y4;逆用公式变化:(x-y+z)2-(x+y-z)2=(x-y+z)+(x+y-z)(x-y+z)-(x+y-z)=2x(-2y+2z)=-4xy+4xz2.二次根式的混合运算过渡语二次根式的混合运算顺序也与整式混合运算顺序一样吗?怎样计算(-2)(2-)?同桌讨论,类比(a-2b)(2a-b)的计算方法计算上式.(-2)(2-)=2-22+2=2-4+2教师明确:二次根式的混合运算顺序与有理数中的运算顺序一样:先乘方,再乘除,最后加减;有括号时先算括号内的.3.例题讲解过渡语刚才已经分析,二次根式仍然满足整数的运算律和有理数的混合运算顺序,下面我们直接运用这些运算律和公式来解决一些问题.(教材例3)计算: (1)();(2)(43)2.引导学生先观察式子的特点,确定:(1)属于“多项式单项式”,直接用乘法分配律计算;(2)属于“多项式除以单项式”,“用多项式的每一项除以单项式,再将结果加在一起”即可.(教材例4)计算:(1)(3)(5);(2)()();学生观察发现,两个都是“多项式多项式”的类型,可以根据整式乘法中多项式乘多项式的法则计算即可,而(2)根据平方差公式计算更简便.知识拓展(1)像()()乘积可以运用平方差公(a+b)(a-b)=a2-b2,同时它们的积是有理数,不含有二次根式,就属于互为有理化因式.一般常见的互为有理化的两个代数式有如下几种情形:和;+和-;a+和a-;m+n和m-n.(2)分母有理化是指把分母中的根号化去,通常在分子、分母上同乘一个二次根式,达到化去分母中的根号的目的.把分母有理化得=.设计意图通过例题训练,使学生逐步形成类比意识,理解新旧知识的联系.3.课堂小结师生共同回顾本节课所学主要内容:关于二次根式的四则混合运算,实质上就是实数的混合运算.(1)运算顺序与有理式的运算顺序相同;(2)运算律仍然适用;(3)与多项式的乘法和因式分解类似,可以利用乘法公式与因式分解的方法来简化二次根式的有关运算.4.检测反馈(即导学案当堂检测)1.计算的结果是( ) A: B: C: D:2.计算的值是( )A:4 B:-4 C:2 D:-23.若,是的小数部份,则 4.计算 (1)(2)(3)5.先化简,后求值:,其中5.板书设计第2课时1.探究整式的乘法法则和公式在二次根式的混合运算中仍然适用2.二次根式的混合运算3.例题讲解例1例26.布置作业一、教材作业【必做题】教材第14页练习第1,2题;教材第15页习题16.3第4题.【选做题】教材第15页习题16.3第6,7,8,9题.七教学反思成功之处教学中强调了前面学过的运算法则和运算律对二次根式同样适用,反映了数学理论的一贯性,使学生在学习中感到所学并不难.整节课,始终以练习为主,通过例题练习,将新旧知识紧密联系在一起,并不断巩固运算法则和运算律在二次根式的运算中的运用.不足
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年危险化学品安全硝化工艺作业模拟考试题库试卷(含答案)
- 2024年上海市考评员应知应会题库(含答案)
- 统计专业毕业论文模板
- 毕业论文检测
- 函授数学专业毕业论文
- 五金机电专业的毕业论文
- 2025年节能、高效干燥设备合作协议书
- 古筝专业方向毕业论文
- 护理系毕业论文结尾
- 2024年医院医务人员医院感染管理考试试题及答案
- IPS内置保温体系施工方案(经典)
- 房屋买卖合同范本Word模板下载
- 授权委托书保险理赔
- 保安公司安全生产培训课件
- 光伏发电项目技术标投标文件
- 普通话声母资料
- 社区开展康复护理知识讲座
- 《测量降水量》教学课件
- 楼顶发光字采购安装投标方案
- 生态学基本原理解析课件
- 硬质合金成型工(三级高级工)理论考试题库(汇总版)
评论
0/150
提交评论