



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
逆向思维是创造性人才必备的思维品质,也是人们学习和生活中必备的一种思维品质。在数学教学中教师应激发学生思维的兴趣,增强学生思维的主动性和积极性,要帮助学生理顺教材的逻辑顺序,要发挥教材中互逆因素的作用,还要采用直观教学,为学生提供逆向思维的基础。关键词 数学教学 培养 逆向思维作为思维的一种形式,逆向思维蕴育着创造思维的萌芽,它是创造性人才必备的思维品质,也是人们学习和生活中必备的一种思维品质。在数学教学中充分认识逆向思维的作用,结合教材内容,注重学生的逆向思维能力的训练,不仅能进一步完善学生的知识结构、开阔思路,更好地实现教学目标,还能达到激发学生创造精神、提升学习能力的目的。1 激发学生思维的兴趣外因是变化的条件,内因是变化的根据。兴趣是最好的老师,因此在数学教学中教师应该想方设法激发学生思维的兴趣,增强学生逆向思维的积极性。 (1)真正确立学生在教学中的主体地位。使学生成为主宰学习的主人、学习活动的主动参与者、探索者和研究者。 (2)实例引路。教师要有意识地剖析、演示一些运用逆向思维的经典例题,用它们说明逆向思维在数学中的巨大作用以及它们所体现出来的数学美,另一方面可列举实际生活中的一些典型事例,说明逆向思维的重要性,从而逐渐激发学生思维的兴趣,增强学生逆向思维的主动性和积极性。 (3)不断提高教师自身的素质。教师渊博的知识和超凡的人格魅力也能在一定程度上激发学生学习兴趣和思维的积极性和主动性。2 帮助学生理顺教材的逻辑顺序由于种种原因,教材的逻辑顺序与学生的心理顺序可能或多或少地存在着矛盾,而这些矛盾势必妨碍学生思维活动的正常进行,因此,教师在钻研教材时必须找出这些矛盾并帮助学生加以理顺,只有这样,才能保证学生思维活动的展开。如某职高教材中有这样一个问题:把-1650写成 (0a360 )的形式,并判定它是第几象限的角?解:-1650=-5360+150-1650是与-1650=-5360+150终边相同的角150是第二象限的角-1650是第二象限角上题是逆用角的定义的一个例子。题中为什么要把-1650写成-1650=-5360+150,学生理解上有一定的困难。原因之一就是教材的逻辑顺序与学生的心理顺序出现了一个小小的矛盾,学生不容易理解“-5360”,而如果把“-5360”改为“5(-360)”学生就比较容量理解,因为“5(-360)”表示顺时针旋转5周。可见教师在备课时能及早发现教材的逻辑顺蛴胙睦硭承虻拿懿镏硭乘涂梢陨心嫦蛩嘉钡恼习欣玫嘏嘌乃嘉芰?br 3 发挥教材中互逆因素的作用3.1 从定义的互逆明内涵(1)重视定义的再认与逆用,加深对定义内涵的认识。许多数学问题实质上是要求学生能对定义进行再认或逆用。在教学实践中,有的学生能把书上的定义背得滚瓜烂熟,但当改变一下定义的叙述方式或通过一个具体的问题来表述时,学生就不知所措了。因此在教学中应加强这方面的训练。 1 逆用定义思考问题,往往能挖掘题中的隐蔽条件,使问题迎刃而解。(2)过互逆定义把握定义间的联系。指数函数与对数函数、函数与反函数等都是互逆的定义,互逆定义之间有着天然的联系,教学中要着重使学生理解怎样从一个定义导出另一个与它互逆的定义,向学生灌输转化的思想,揭示定义间相互联系,当然也包括找出不同点。3.2 从公式的互逆找灵感(1)会公式的互逆记忆。很多数学问题是逆用公式的问题,要更好地解决这类问题,首先应该让学生知道公式的互逆形式,学会公式的互逆记忆。(2)逆用公式(包括公式变形的逆用)。往往可以使问题简化,经常性地注意这方面的训练可以培养学生思维的灵活性、变通性,使学生养成善于逆向思维的习惯,提高灵活运用知识的能力。公式逆用是学生常常感到困惑的一个问题,也是教学中的一个难点,教学中必须强化这方面的训练。3.3 从定理、性质、法则的互逆悟规律数学中有许多可逆定理、性质和法则,恰当地运用这些可逆定理、性质和法则,可达到使学生将所学知识融会贯通的目的。(1)让学生学会构作已知命题的逆命题与否命题,掌握可逆定理、性质和法则的互逆表述。交换原命题的条件和结论,所得的命题是逆命题;同时否定命题的条件和结论,所得的命题是否命题。教学中要用一定的时间、适当的训练量加强学生这方面的练习,打好基础。(2)掌握四种命题间的关系。四种命题之间的关系见附图。互逆命题和互否命题都不是等价命题,而互为逆否关系的命题是等价命题。学生搞清四种命题间的关系,不仅能掌握可逆的互逆定理、性质、法则,而且能增强思维的严谨性和灵活性,培养创造性思维能力,也是科学发现的途径之一。(3)掌握反证法及其思想。反证法是一种间接证法,它是通过证明一个命题的逆否命来证明原命正确的一种方法,是运用逆向思维的一个范例。一些问题运用反证法后就显得非常简单,还有一些问题只能用反证法来解决,因此反证法是高中生必须掌握的一种数学方法。反证法的思想在其他学科和其他领域也有着广泛的应用,应该重视。(4)正确应用充要条件。“充要条件”是高中数学中一个重要的数学概念,是解决数学问题时进行等价转换的逻辑基础。一个定理如果有逆定理,那么定理、逆定理合在一起,就可构作一个充要条件。重视充要条件的教学,使学生能正确应用充要条件可培养学生的逆向思维能力。4 采用直观教学,为学生提供逆向思维的基础马克思主义哲学告诉我们,感性认识是理性认识的基础,理性认识依赖于感性认识。在数学教学中利用必要的教具、模型、幻灯、多媒体等进行直观教学,能使学生的多种器官协同参与思维活动,获得较多的感性认识,提高思维的兴趣和效率。必要的教具、模型、幻灯和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年企业物资供应与管理模拟题集及解析
- 电力基本知识培训课件
- 2025年信息技术在物资储备仓库的应用及面试模拟题解析
- 2025年软件编程实战题集及解析指南
- 2025年软件测试工程师实战技能提升教程
- 2025年初级美容师笔试模拟题及答题技巧解析
- 2025年初中地理教学设计与模拟题集解析
- 电信安全知识培训资料课件
- 2025年税务局招聘考试模拟试题及答案解析手册
- 电井安全知识培训内容课件
- 神经外科术后高热患者的治疗及护理讲课件
- 社区警务团队管理制度
- 应急消防疏散培训课件
- 产房分娩安全管理制度
- 普通化学无机化合物
- 2025年福建省无人驾驶航空器操作控制职业技能大赛(航拍无人机驾驶员)试题(附答案)
- 落户防离职协议书
- 职称评审委托合同协议
- 铁路团体车票协议书
- 2025年中国高考评价体系深度分析解读课件
- 早产儿低体温管理
评论
0/150
提交评论