已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长沙理工大学备课纸概率论与数理统计第一章 概率论的基本概念1 随机事件、样本空间1、随机试验在个别试验中其结果出现不确定性;在大量重复试验中其结果又具有统计规律性的现象,称之为随机现象.概率论是研究和揭示随机现象统计规律性的一门数学学科.对随机现象进行的观察或实验称为随机试验.若一个试验具有下列三个特点:(1) 在相同条件下可重复进行.(2) 每次试验的可能结果不止一个,并且事先可以知道试验的所有可能结果.(3) 进行一次试验之前,不能确定会出现哪一个结果.则把这一试验称为随机试验,常用E表示.例1 从一批产品中任取8件,观察其中的正品件数,则这一试验的样本空间为:W =0,1,2,3,4,5,6,7,8引入下列随机事件:A=正品件数不超过3=0,1,2,3;B=取到2件至3件正品=2,3;C=取到2件至5件正品=2,3,4,5;D=取到的正品数不少于2且不多于5=2,3,4,5;E=取到的正品数至少为4=4,5,6,7,8;F=取到的正品数多于4=5,6,7,8.2、 随机事件与样本空间随机事件(简称事件):在随机试验中,可能发生也可能不发生的结果,通常用大写字母A、B,表示。随机事件分为基本事件与复合随机事件,基本事件(或称为样本点,本书中用表示)是指随机试验中最简单的随机事件(或称最简单的结果); 复合随机事件是指由若干个基本事件构成随机事件.样本空间:随机试验E的全体基本事件组成的集合。记为=.为方便讨论我们也将下列两个事件称为随机事件:每次试验中都必然发生的事件,称为必然事件S.每次试验中都不发生的事件,称为不可能事件.基本事件是样本空间的单点集.必然事件包含一切样本点,它就是样本空间.不可能事件不含任何样本点,它就是空集.3、 事件间的关系及其运算表示事件A包含于事件B或称事件B包含事件A,指事件A发生必然导致事件B发生.表示事件A与事件B中至少有一个事件发生,称此事件为事件A与事件B的和(并)事件.个事件的和记为 ,也可简记为.在可列无穷的场合,用表示事件“诸事件至少有一个发生.”表示事件A与事件B同时发生, 称为事件A与事件B的积(交)事件,或记为AB。积事件AB是由A与B的公共样本点所构成的集合.个事件的积记为,也可简记为. 在可列无穷的场合,用 表示事件“诸事件同时发生.”表示事件A发生但事件B不发生,称为事件A与事件B的差事件.显然有.对于任意两事件A,B总有如下分解:表示事件A与B不可能同时发生,称A和B是互不相容的或互斥的.基本事件是两两互不相容的.60表示事件A与B在随机试验中一定会发生一个也可能发生一个,称A和B互为对立事件,或称A与B互为逆事件.事件A的逆事件记为 , 表示“A不发生”这一事件.显然有 .事件的运算律(1)交换律:AB=AB,AB=BA;(2)结合律(AB)C=A(BC);(AB)C=A(BC);(3)分配律:A (BC)= (AB)( A C );A(B C)=(AB)(AC).(4) 德摩根律(De Morgan):(5)例2: 设A,B,C为三个事件,试用A,B,C表示下列事件:(1)A发生且B与C至少有一个发生;(2)A与B都发生而C不发生;(3)A,B,C恰有一个发生;(4)A,B,C中不多于一个发生;(5)A,B,C不都发生;(6)A,B,C中至少有两个发生.解:2概率、古典概率1、概率定义1: 在相同条件下,进行了n次试验.若随机事件A在这n次试验中发生了k次,则比值 称为事件A的频率,记为频率具有下列性质:(1) 对于任一事件A,有; (2) 对必然事件;历史上著名的统计学家蒲丰(Buffon)和皮尔逊(Pearson)曾进行过大量抛硬币的试验,其结果如表所示.可见出现正面的频率总在0.5附近摆动.随着试验次数的增加,它会逐渐稳定于0.5.定义2: 设事件A在n次重复试验中发生了k次, n很大时,频率稳定在某一数值p的附近波动,而随着试验次数n的增加,波动的幅度越来越小,则称p为事件A发生的概率,记为.2、概率的公理化定义 设为样本空间,A为事件对于每一个事件A赋予一个实数P(A),且满足以下公理:(1) 非负性:;(2) 规范性:;(3) 可列可加性:对于两两互不相容的多个事件有,则称实数P(A)为事件A的概率.3、概率的性质:性质1:.性质2:对于两两互不相容的多个事件有.性质3:设是两个事件A,B, 若,则有(可减性),从而有.性质4:对任事件,有性质5:对任事件,有.性质6:对任事两个事件A,B,有.4、古典概型定义4:设随机试验E满足如下条件:(1)试验的样本空间只有有限个样本点,即;(2) 每个样本点的发生是等可能的,即;则称试验为古典概型,也称为等可能概型。例3 从0,1,2, ,9共10个数字中随机地有放回地接连取4个数字,并按其出现的先后排成一行.试求下列事件的概率:(1) 4数字排成一个偶数;(2) 4数字排成一个四位数;(3) 4数字中0恰好出现两次.解:(一个古老的问题)一对骰子连掷25次.问出现双6与不出现双6的概率哪个大? 5、几何概型也称的事件A几何概率.例4: (约会问题)甲、乙两人相约在某一段时间T内在预定地点会面。先到者等候另一人,经过时间t(tT)后即离去,求甲乙两人能会面的概率.(假定他们在T内任一时刻到达预定点是可能的) 0 例6平面上画有等距离为a的一些平行线,向平面上任意投一长为l(l0,则有 P(AB)=P(A)P(BA).同样,当P(B)0时,有 P(AB)=P(B)P(AB). 乘法定理可推广至任意有限个事件的情形:例2: 设袋中有a只白球,b只黑球.任意取出一球后放回,并再放入与取出的球同色的球c只,再取第二次,如此继续,共取了n次,问前次取出黑球,后次取白球的概率是多少?解:.4、 全概率公式与贝叶斯公式5、全概率公式贝叶斯公式例3 某工厂由甲,乙,丙三台机器生产同一型号的产品,它们的产量各占30%,35%,35%,废品率分别为5%,4%,3%.产品混在一起.(1)从该厂的产品任取一件,求它是废品的概率.(2)若取出产品是废品,求它是由甲,乙,丙三台机器生产的概率各是多少?例4 对以往的数据分析结果表明,当机器调整良好时,产品的合格率为90%,而机器未调整良好时,其合格率为30%.每天机器开动时,机器调整良好的概率为75%.试求已知某日生产的第一件产品是合格品,机器调整良好的概率是多少?解: 设A=机器调整良好,B=生产的第一件产品为合格品.已知,2独立性1、 事件的独立性定义7: 定理 定义8:若三个事件满足下列条件定义9: 对个事件,若以下个等式都成立:其中是1,2,数字中任意个数字的任意排列,则称这个事件相互独立.例1 假设我们掷两次骰子,并定义事件A=第一次掷得偶数,B=第二次掷得奇数,C=两次都掷得奇数或偶数,证明A,B,C两两独立,但A,B,C不相互独立.证明: 容易算出例2: 甲、乙两射手射击同一目标,他们击中目标的概率分别为0.9与0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年生态环境工程师招聘面试题库及参考答案
- 2025年高级秘书招聘面试参考题库及答案
- 2025年文化创意经理招聘面试参考题库及答案
- 2025年广告文案撰写师招聘面试题库及参考答案
- 2025年新媒体运营专员招聘面试参考题库及答案
- 2025年产线管理专员招聘面试题库及参考答案
- 2025年游戏开发者招聘面试题库及参考答案
- 2025年媒体关系经理招聘面试题库及参考答案
- 2025年教学督导招聘面试参考题库及答案
- 2025年应用程序测试员招聘面试题库及参考答案
- 广州长隆调研报告
- 沁园春雪朗读技巧指导教案设计
- 温度检测及仪表
- 急需学科专业引导发展清单
- 国开电大应用写作(汉语)形考任务4参考答案
- 人教版四年级数学上册四年级数学上册典型例题系列之第4单元:面积问题专项练习(解析版)人教版
- 青少年心理健康教育课件
- JJF 1975-2022 光谱辐射计校准规范
- 布袋除尘器技术协议
- 危大工程验收记录表(模板工程)
- 短视频:策划+拍摄+制作+运营课件(完整版)
评论
0/150
提交评论