




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习反思八年级数学(上)导学练案 总第 课时课题:14.2.2一次函数(1)甘肃天祝 祁连初中 王成【学习目标】1.理解一次函数的概念,了解正比例函数与一次函数的关系;2.能够根据实际问题中的已知条件,确定一次函数的解析式.【前置学习】(一)试写出下列每个问题中的两个变量之间的函数关系式:1.某登山队大本营所在地的气温为5,海拔每升高1 km气温下降6,登山队员由大本营向上登高km时,他们所在位置的气温是; .2.有人发现,在2025时蟋蟀每分钟鸣叫次数C与温度(单位:)有关,即C的值约是的7倍与35的差; .3.一种计算成年人标准体重(单位:千克)的方法是,以厘米为单位量出身高值,再减常数105,所得差是的值; .4.某城市的市内电话的月收费额(单位:元)包括月租费22元和拨打电话分钟的计时费(按0.1元/分收取); .5.把一个长10cm、宽5cm的长方形的长减少cm,宽不变,长方形的面积(单位:)随的值而变化. .(二)观察思考:1.上面的五个函数解析式,有什么共同特点?(若有困难,请先学习课本页的内容)2.这种函数解析式的一般形式如何表达?它叫什么函数?与正比例函数有何关系?结论:一般地,形如 ( )的函数,叫做一次函数.当 时, yk x+b即变成yk x,所以说 是一种特殊的一次函数.(三)巩固应用:1.下列函数中, 是一次函数, 又是正比例函数. 2.一次函数中,一次项系数是 ,常数项是 .(四) 疑难摘要: 【学习探究】一、合作交流、解决困惑(一)小组交流:通过自学你学会了什么?还有什么问题不明白?在小组内讨论并解决疑难.(二)班级展示与教师点拔:展示一:1.一次函数中自变量的系数和次数各满足什么条件?2. 已知y(k3)xk22是关于x的一次函数,求k的值;展示二:(教师结合学生情况自主生成)二、应用新知,解决问题例1 已知函数yk x+b,当x=1时,y=-1, 当x=4时,y=5, 求k和b.例2 已知关于x的函数y(k2)xk 24,(1)当k满足什么条件时,它是正比例函数?(2)当k满足什么条件时,它是一次函数?三、巩固新知,当堂训练课本P90练习 第1、2、3题.四、反思小结本节课你学到了什么知识和方法?还有什么困惑?(小组交流,互助解决)【自我检测】1.下列说法中不正确的是( )(A)正比例函数一定是一次函数 (B)一次函数不一定是正比例函数(C)不是一次函数就不是正比例函数 (D)正比例函数不是一次函数2.已知方程3x-2y=1,把它化成yk x+b的形式是 ;这时k= ,b= ;当x=-2时,y= ,当y=0时,x= .3.关于x的一次函数中,则m、n应满足的条件分别是 .4.一个弹簧不挂重物时长12cm,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上1.5kg的物体后,弹簧伸长2cm.(1)求弹簧总长y(单位:cm)随所挂物体质量x(单位:kg)变化的函数解析式;(2)求所挂重物为4kg时,弹簧的总长.【应用拓展】5已知y+b与x+a(a、b是常数)成正比例,(1)试说明y是x的一次函数;(2)如果x=3时y=5,x=2时y=2,求y与x的函数关系式学习反思八年级数学(上)导学练案 总第 课时课题:19.2.2一次函数(2)甘肃天祝 祁连初中 王成【学习目标】1.会画一次函数的图象,明白一次函数的图象与正比例函数的图象的关系;2.能结合图象说出一次函数的性质.【前置学习】一、基础回顾:1.画函数图象的一般方法是什么?它有哪几个步骤?2在同一坐标系中,画出函数y=-6x与y=-6x+5的图象.二、自主学习请认真自学课本P91-P92“例3”以前的内容,边学习边思考下列问题:1.上面你画出的函数y=-6x与y=-6x+5的图象与课本图19.2-3相同吗?2.请比较这两个函数图象的相同点与不同点:(1)这两个函数图象的形状都是 ,并且倾斜程度 ;(2)函数y=-6x的图象经过原点,函数y=-6x+5的图象与y轴交于点 ,即函数y=-6x+5的图象可以看作由直线y=-6x向 平移 个单位长度而得到.3.猜想:函数y=-6x-3的图象可以看作由直线y=-6x向 平移 个单位长度而得到.4归纳:一次函数yk x+b的图象特征:(1)一次函数yk x+b的图象是 ,我们称它为 yk x+b;(2)直线yk x+b可看作由直线yk x平移 个单位长度而得到(当 时,向上平移;当 时,向下平移).三、疑难摘要 .【学习探究】一、合作交流、解决困惑(一)小组交流:通过自学你学会了什么?还有什么问题不明白?在小组内讨论并解决疑难.(二)班级展示与教师点拔:1.既然一次函数yk x+b的图象是直线,那么怎样画才最简单?2.自学课本P92例3后,在同一坐标系中,画出函数y=x+1,y=-x+1,y=2x+1,y=-2x+1的图象,3.观察上面所画的图象,看看一次函数解析式ykx+b (k0)中,k、b的正负对函数图象有什么影响?归纳:(1)当k0时,直线ykx+b由左至右 ,y随x的增大而 ; 当k0时,直线ykx+b由左至右 ,y随x的增大而 . (2)对于直线ykx+b,当k0时,一定经过 象限;当k0时,一定经过 象限;当b0时,一定经过 象限,当b0时,一定经过 象限.二、巩固新知,当堂训练1.课本P93练习 第1、2、3题.2.若一次函数y=(3-m)x-m的图象经过第二、三、四象限,则m的取值范围是 .三、反思小结本节课你学到了哪些知识和方法?还有什么困惑?【自我检测】oxy1.直线y=-2x+3可以看作由直线y=-2x向 平移 个单位长度得到,它与x轴交于 ,与y轴交于 ,它经过 象限, y随x的增大而减小.2. 如图是一次函数ykxb的图象,根据图象可知( )A. k0,b0 B. k0,b0 C. k0,b0 D. k0,b0 3. 已知点P(a,b)在第四象限,则直线yaxb不经过( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限4.点P1(x1,y1), P2(x2,y2)是直线y=-4x+3上的两点,且x1x1,则y1与y2的关系是( )(A)y1y2 (B)y1y20 (C)y1y2 (D)y1=y25.用“两点法”画出一次函数y2x1与y3x6的图象.第6题【应用拓展】6.如图,点P(x,y)在第一象限,且x+y=10,点A的坐标为(8,0),设OPA的面积为S(1)用含x的解析式表示S,写出x的取值范围,画出函数S的图象;(2)当S=12时,求点P的坐标.学习反思八年级数学(上)导学练案 总第 课时课题:14.2.2 一次函数(3)甘肃天祝 祁连初中 王成【学习目标】1会用待定系数法求一次函数的解析式,体会二元一次方程组的实际应用.2能利用一次函数知识解决简单的实际问题,从中领悟分类讨论、数形结合的思想方法.【前置学习】一、基础回顾:1.正比例函数的解析式是 ;一次函数的解析式是 .2.若正比例函数的图象经过点(-1,3),则它的解析式应为 .二、问题引领:我们知道求正比例函数y=kx的解析式关键是确定常数k的值,那么,要求一次函数的解析式关键又是什么?怎样求一次函数的解析式呢?(学习本节课后,就会明白)三、自主学习请自学课本P93-94例4的解法后,解答下列问题:1.已知一次函数的图象过点(2,7)与(-2,-1),求这个一次函数的解析式.2.归纳:求一次函数ykxb解析式,关键是求出 和 的值.若知道图象上的两个点或知道x,y的两组对应值,则可以列出关于k、b的 ,求出k、b就可得到一次函数解析式。像这样,求函数解析式的方法叫做 法.函数解析式y=kx+b一次函数图象:直线l选取解出画出选取3.已知一次函数的解析式画图象与已知一次函数的图象求解析式,二者的解题过程有何关系?请完成下表 四、 疑难摘要 .【学习探究】一、合作交流、解决困惑(一)小组交流:通过自学你学会了什么?还有什么问题不明白?在小组内讨论并解决疑难.(二)班级展示与教师点拔:展示一:已知一条直线经过点A(0,6),且平行于直线y2x1.(1)求这条直线的函数解析式; (2)若这条直线经过点B(m,2),求m的值. 展示二:(教师结合学生情况自主生成)二、应用新知,解决问题例题(略,见课本P94 例5)思考:(1)付款金额与 相关,种子的价格是不是固定不变的?它与什么有关?(2) 购买种子以 kg为界线,不足和超过这一界线时列出的函数关系式相同吗?像这样的分段函数关系式合在一起怎样表示?并画出图象。(3)你能根据图象求出一次性购买1.5kg或3kg种子,各需付款多少元吗?三、巩固新知,当堂训练课本P95 练习第1、2题.四、反思小结本节课你学到了什么知识和方法?还有什么困惑?(小组交流,互助解决)【自我检测】1.已知一次函数y=kx+b,当x=-4时y=9,当x=6时y=3,则此函数的解析式为 .2. 把直线y=-3x先向右平移2个单位再向上平移5个单位后,所得到的直线的解析式为 .3.如图,求直线AB对应的函数解析式。4.如图,在边长为2的正方形ABCD中,动点P从B点出发,沿BCD运动到D点,设ABP的面积为y,点P的行程为x,求y与x的函数关系式.【应用拓展】5.如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系的图象.(1)根据图象,写出该函数的解析式;(2)甲、乙两人分别乘坐2.7 km和13 km,各应付多少钱?(3)若丙乘坐付车费30.8元,他乘坐了多少千米? 7学习反思八年级数学(上)导学练案 总第 课时课题:14.2.2 一次函数(4)甘肃天祝 祁连初中 王成【学习目标】1.熟练掌握用待定系数法求函数解析式,熟练地作出一次函数的图象;2.熟练利用函数图象解决有关实际问题.【前置学习】一、自主探究:1已知一次函数的图象经过点A(2,4)和点B(-2,-2),求这个一次函数的解析式2.求函数与两坐标轴的交点坐标,及其图象与两坐标轴围成的三角形的面积.3.如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题:(1)当行使8千米时,收费应为 元.(2)从图象上你能获得哪些信息?(请写出2条) (3)求收费y元与行使x千米(x3)之间的函数关系式.4.自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费y(元)是用水量x(吨)的函数,当0x5时,y0.72 x,当x5时,y0.9 x -0.9(1)画出函数的图象;(2)观察图象,利用函数解析式,回答自来水公司采取的收费标准.四、 疑难摘要 .【学习探究】一、合作交流、解决困惑(一)小组交流:通过自学你学会了什么?还有什么问题不明白?在小组内讨论并解决疑难.(二)班级展示与教师点拔:1.如图表示某汽车行驶的路程km与时间min的函数关系,解答下列问题:091630t/minS/km4012(1)汽车在前9min内的平均速度是 ,汽车在中途停留了 min.(2)求S与t的函数关系式.2.我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶,下图中S1、S2分别表示两船相对于海岸的距离S(海里)与追赶时间t(分)关系.(1)哪条线表示快艇B的?(2)15分内B能否追上A?你是如何判断的?(3)当船只A逃到离海岸的距离12海里的公海时, 快艇B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?二、巩固新知,当堂训练教师结合学生情况从课本P98-100习题19.2中选择训练.三、反
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防化稀释车项目可行性研究报告
- 智能灌溉APP项目可行性研究报告
- 防控疫情培训知识课件
- 数字化转型下企业文化的重塑
- 基于大数据的人力资源软件个性化用户画像构建-洞察及研究
- 泸州市农民轮换工劳动合同2篇
- 数码相机销售合同3篇
- 2025个人借款合同或借贷合同3篇
- 软膏靶向递送系统优化-洞察及研究
- 2024-2025学年浙江省杭州市余杭区人教版三年级下册期末考试数学试卷(含答案)
- 九一八警钟长鸣强国有我+课件-2025-2026学年高一上学期爱国主义主题班会教育+-
- 人教部编版小学三年级语文上册课后习题参考答案
- 光伏运维安全培训总结课件
- 土石方运输居间合同范本土石方运输居间合同格式-仅供参考8篇
- 2025-2026学年人教版(PEP)三年级上册英语教学计划(三篇)
- 室外消火栓埋地施工方案
- 2025中国人民抗日战争暨世界反法西斯战争胜利80周年阅兵观后感心得体会3篇
- 眼睛保健操教学课件
- “时空对话”朗诵剧剧本
- 成人脑室外引流护理标准解读
- 数字经济时代的法律挑战
评论
0/150
提交评论