




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
matlab粒子滤波中,请问状态方程的x(t)和观测方程的y(t)表达什么意思?x(t)=f(x(t-1),u(t),w(t) (1) 状态转移方程,u(t)为控制量,w(t) 为模型噪声 y(t)=h(x(t),e(t) (2) 观测方程,e(t)为观测噪声举个比较简单的例子,粒子滤波主要用来解决非线性非高斯问题,方法是通过蒙特卡罗方法生成具有一定概率密度分布的粒子,假设为N个,通过对粒子后验概率的求解,得到目标状态的最优估计, 假设现在粒子初始状态为X(0)=1,于是在X(0)附近用正态分布生成N个粒子,生成的N个粒子可能是1,2,0,3,1,1,这些粒子中肯定1出现的概率是最大的,对每个粒子初始权值1/N; 假设现有一个状态转移方程X(t)=X(t-1)+1+W,于是将这N个粒子通过状态转移方程求得了X(1)时刻的粒子状态,2,3,1,4,2,2(这里没有加上噪声W,为了看着方便,W一般是高斯噪声) 得到状态后通过观测方程求每个粒子的权值w(1)i,一般实际中用似然度函数,比如对于一个图像人头通过颜色直方图进行跟踪,那这个观测方程就是颜色直方图的似然度函数,于是得到了每个粒子的似然度匹配值,假设X(1)i(i表示N个粒子中的第i个粒子)的似然度值为wp(1)i,用X(0)i的粒子权值w(0)i*wp(1)i,得到了未归一化的权值,再对其进行归一化就得到了w(1)i,而X在T=1时刻的估计值就可以用X(1)=SUM(X(1)i*w(1)i); i=1N来求得,或者也可以取w最大的一点的X值 也就是说在粒子滤波器中状态转移方程求的是粒子在下一个时刻的状态,观测方程是对粒子在这一状态的评价,即这个状态与最优的状态相比好不好,好,则这一点所占的权重就大,不好,则占的权重就小粒子滤波算法源于Montecarlo的思想,即以某事件出现的频率来指代该事件的概率。因此在滤波过程中,需要用到概率如P(x)的地方,一概对变量x采样,以大量采样的分布近似来表示P(x)。因此,采用此一思想,在滤波过程中粒子滤波可以处理任意形式的概率,而不像Kalman滤波只能处理高斯分布的概率问题。他的一大优势也在于此。再来看对任意如下的状态方程x(t)=f(x(t-1),u(t),w(t)(1)y(t)=h(x(t),e(t)(2)其中的x(t)为t时刻状态,u(t)为控制量,w(t)和e(t)分别为模型噪声和观测噪声。(1)当然是状态转移方程,(2)是观测方程。那么对于这么一个问题粒子滤波怎么来从观测y(t),和x(t-1),u(t)滤出真实状态x(t)呢?看看滤波的预估阶段:粒子滤波首先根据x(t-1)和他的概率分布生成大量的采样,这些采样就称之为粒子。那么这些采样在状态空间中的分布实际上就是x(t-1)的概率分布了。好,接下来依据状态转移方程加上控制量可以对每一粒子得到一个预测粒子。所有的预测粒子就代表了涉及哪些参数化的东西)。进入校正阶段来:有了预测粒子,当然不是所有的预测粒子都能得到我们的时间观测值y,越是接近真实状态的粒子,当然获得越有可能获得观测值y。于是对所有的粒子得有个评价了,这个评价就是一个条件概率P(y|xi),直白的说,这个条件概率代表了假设真实状态x(t)取第i个粒子xi时获得观测y的概率。令这个条件概率为第i个粒子的权重。对所有粒子都进行这么一个评价,那么越有可能获得观测y的粒子,当然获得的权重越高。好了预测信息融合在粒子的分布中,观测信息又融合在了每一粒子的权重中。最后采用重采样算法,去除低权值的粒子,复制高权值的粒子。所得当然是需要的真实状态x(t)了,而这些重采样后的粒子,就代表了真实状态的概率分布了。下一轮滤波,再将重采样过后的粒子集输入到状态转移方程中,直接就能够获得预测粒子了。初始状态的问题:可以认为x(0)在全状态空间内平均分布。于是初始采样就平均分布在整个状态空间中。然后将所有采样输入状态转移方程,得到预测粒子。再评价下所有预测粒子的权重,当然我们在整个状态空间中只有部分粒子能够获的高权值。重采样算法去除低权值的,将下一轮滤波的考虑重点缩小到高权值粒子附近。下面是我最后改写和精简的一个粒子滤波Matlab算法。x = 0.1; % initial stateQ = 1;% process noise covarianceR = 1;% measurement noise covariancetf = 50; % simulation lengthN = 100; % number of particles in the particle filterxhat = x;P = 2;xhatPart = x;% Initialize the particle filter.初始化粒子滤波,xpart值用来在不同时刻生成粒子for i = 1 : Nxpart(i) = x + sqrt(P) * randn;endxArr = x;xhatPartArr = xhatPart;close all;for k = 1 : tf%tf为时间长度,k可以理解为时间轴上的k时刻% System simulation% x数据为时刻k的真实状态值x = 0.5 * x + 25 * x / (1 + x2) + 8 * cos(1.2*(k-1) + sqrt(Q) * randn; %状态方程(1)y = x2 / 20 + sqrt(R) * randn;%观测方程(2)% Particle filter生成100个粒子并根据预测和观测值差值计算各个粒子的权重for i = 1 : Nxpartminus(i) = 0.5 * xpart(i) + 25 * xpart(i) / (1 + xpart(i)2) + 8 * cos(1.2*(k-1) + sqrt(Q) * randn;ypart = xpartminus(i)2 / 20;vhat = y - ypart; %观测和预测的差q(i) = (1 / sqrt(R) / sqrt(2*pi) * exp(-vhat2 / 2 / R); %根据差值给出权重end% Normalize the likelihood of each a priori estimate.qsum = sum(q);for i = 1 : Nq(i) = q(i) / qsum;%归一化权重end% Resample.for i = 1 : Nu = rand; % uniform random number between 0 and 1qtempsum = 0;for j = 1 : Nqtempsum = qtempsum + q(j);if qtempsum = u%重采样对低权重进行剔除,同时保留高权重,防止退化的办法xpart(i) = xpartminus(j);break;endendend% The particle filter estimate is the mean of the particles.xhatPart = mean(xpart);%经过粒子滤波处理后的均值% Plot the estimated pdfs at a specific time.if k = 20% Particle filter pdfpdf = zeros(81,1);for m = -40 : 40for i = 1 : Nif (m = xpart(i) & (xpart(i) m+1)%pdf为概率密度函数,这里是xpart(i)值落在m, m+1)上的次数pdf(m+41) = pdf(m+41) + 1;endendendfigure;m = -40 : 40;%此图1绘制k=20时刻xpart(i)区间分布密度plot(m, pdf / N, r);hold;title(Estimated pdf at k=20);disp(min, max xpart(i) at k = 20: , num2str(min(xpart), , , num2str(max(xpart);end% Save data in arrays for later plottingxArr = xArr x;xhatPartArr = xhatPa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年3D打印的医疗应用前景
- 农业银行2025商洛市秋招笔试专业知识题专练及答案
- 2025城市热岛效应的缓解措施
- 交通银行2025黄冈市结构化面试15问及话术
- 2025行业创新突破与挑战研究
- 邮储银行2025绵阳市秋招无领导模拟题角色攻略
- 交通银行2025肇庆市秋招笔试性格测试题专练及答案
- 民间贷款合同书样书3篇
- 中国银行2025威海市数据分析师笔试题及答案
- 农业银行2025山南市秋招英文面试题库及高分回答
- 2025年脂肪醇聚氧乙烯(7)醚项目市场调查研究报告
- 投放仪器合同协议书范本
- 车辆委托报废协议书
- 水利水电工程重大事故处理试题及答案
- 燃气经营企业从业人员专业培训考核大纲(试行)
- 中国共产主义青年团纪律处分条例试行解读学习
- 租油罐储存合同协议
- 《2025-0085T-QC 乘用车用差速器总成技术要求和试验方法》知识培训
- 国家能源集团陆上风电项目通 用造价指标(2024年)
- 弘扬光荣传统中密切内部关系
- 二甲护理条款解读
评论
0/150
提交评论