



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆周角和圆心角的关系说课稿“圆周角和圆心角的关系”是义务教育课程标准实验教科书人教版八年级数学下册的内容,共两个课时,下面我从第一个课时的设计进行说明.一、教材分析本课是在学习了圆的各种概念和圆心角后进而要学习的圆的又一个重要的性质,它在推理、论证和计算中应用比较广泛,是本章重点内容之一。1、 本节知识点(1)圆周角的概念(2)圆周角的定理2、教学目标(1)理解并掌握圆周角的概念; (2)掌握圆周角定理,并能熟练地运用它们进行论证和计算; (3)通过圆周角定理的证明,使学生了解分情况证明数学命题的思想和方法。 3、教学重点:圆周角定理。教学难点: 认识圆周角定理需要分三种情况逐一证明的必要性。(重点与难点的突破将在教学过程中详细说明)二、本节教材安排本节共分两个课时,第一课时主要研究圆周角和圆心角的关系,第二课时研究圆周角定理的几个推论,并解决一些简单问题。今天我向大家汇报的是第一课时的设计。三、教学方法数学教学是师生之间、学生之间交往互动与共同发展的过程,因此,我认为教法与学法是密不可分的。本节主要采取探究合作、启发引导的教学方法,多媒体的运用,激发了学生探究合作的积极性,为教师的启发引导提供了生动的素材,使学生获得知识,形成技能。四、 教学步骤活动内容:通过一个问题情境,引入课题情境:在射门游戏中,球员射中球门的难易与他所处的位置B对球门AC的张角(ABC)有关。如图,当他站在B,D,E的位置射球时对球门AC的张角的大小是相等的?为什么呢?你能观察到这三个角有什么共同特征吗? 活动目的:通过此问题引起学生学习的兴趣。此问题意在通过射门游戏引入圆周角的概念。同时为第2课时的学习埋下伏笔第二环节 新知学习ABC活动内容:(一)圆周角的定义的学习 为解决这个问题我们先来研究一种角。观察图中的ABC,顶点在什么位置?角的两边有什么特点? 可以发现,它的顶点在圆上,它的两边分别与圆还有另一个交点。像这样的角,叫做圆周角。 请同学们考虑两个问题: (1)顶点在圆上的角是圆周角吗? (2)角的两边都和圆相交的角是圆周角吗?判断下列图示中,各图形中的角是不是圆周角?并说明理由。通过学生完成练习自己总结出圆周角的特征。圆周角有两个特征:角的顶点在圆上;两边在圆内的部分是圆的两条弦。活动目的:通过学生主动观察,探索概念的形成,这样能使学生更好地理解概念。(二)圆周角定理的学习我们先研究一条弧所对的圆周角与它所对的圆心角之间的关系。请同学们在圆上确定一条劣弧,画出它所对的圆心角与圆周角。归纳同学们的意见我们得到以下几种情况:BAOCABCOBACO引导学生通过小组交流讨论的方式,分别考虑这三种情况下,ABC和AOC之间的大小关系由此得到:一条弧所对的圆周角等于它所对的圆心角的一半。 活动目的:AOCB学生通过画图,渗透分类讨论的思想,由特殊到一般解决问题的策略。由学生的画图结果我们得到三种图形。在这三种情况下,提问ABC与AOC的大小有什么关系?通过这个问题的提出,引导学生由特殊到一般解决问题。再由推理论证得到结论。当学生证明了图1的情形后,让学生思考:图2、图3两种情况能否转化为第一种情况?如何转化?实际上,实现转化的方法是连接BO并延长。教学过程中要有意识地向学生渗透解决问题的策略以及转化、分类、归纳等数学思想方法。第三环节 练习活动内容:1如图,在O中,BOC=50,则BAC= 。ABCO变化题1:如图,点A,B,C是O上的三点,BAC=40,则BOC= 变化题2:如图,BAC=40,则OBC= 2如图,OA,OB,OC都是O的半径, AOB=2 BOC, ACB与 BAC的大小有什么关系?为什么? ABCOABCDO第2题图 第3题图3如图,A,B,C,D是O上的四点,且BCD=100 ,求BOD(BCD所对的圆心角)和BAD的大小。活动目的:通过练习目的是使学生熟练地掌握圆周角与圆心角的关系。通过图形和条件的变化,让学生了解要找出圆周角与圆心角的关系,就必须找出它们所对的同一条弧。第四环节 课堂小结到目前为止,我们学习到和圆有关的角有几个?它们各有什么特点?相互之间有什么关系?第五环节 布置作业课后思考如图,当他站在B,D,E的位置射球时对球门AC的张角的大小是相等的?为什么呢? 目的:过渡下一节课圆周角定理的推论的学习。引起学生自己寻找结果的兴趣。(三)说小结首先,通过学生小组交流,谈一谈你有什么收获。(提示学生从三方面入手:1、学到了知识;2、掌握了哪些数学方法;3、体会到了哪些数学思想。)然后,教师引导小组间评价。使学生对本节内容有一个更系统、深刻的认识,实现从感性认识到理性认识的飞跃。(四)、板书设计为了集中浓缩和概括本课的教学内容,使教学重点醒目、突出、合理有序,以便学生对本课知识点有了完整清晰的印象。我只选择了本节课的两个知识点作为板书。(五)知识点的课外拓展为了开阔学生视野,开拓学生思路,给学有余力的学生施展身手的机会,并为下一节“同弧或等弧所对的圆周角相等”的知识点作好铺垫。因此,我设计了课后探究题,让学生探讨“在同圆或等圆中,相等的弦所对的圆周角的关系”。(六)媒体的运用及目的新
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 增强现实游戏中的用户生成内容创新研究-洞察及研究
- 承包竹笋场地合同范本
- 水厂机电安装合同范本
- 车库购买合同范本
- 加工生产协议合同范本
- 分公司招商合同范本
- 保密合同范本
- 美甲店转租店铺合同范本
- 输液导管相关静脉血栓形成理论考核试题及答案
- 某电厂招聘值长笔试、面试题含答案
- 世界范围内社区支持农业CSA(下)
- 急性缺血性脑卒中溶栓治疗
- NB∕T 10209-2019 风电场工程道路设计规范
- GB/T 4668-1995机织物密度的测定
- GB/T 17107-1997锻件用结构钢牌号和力学性能
- 《无人机组装与调试》课件 第一章
- 校园文化施工组织设计范本
- 轨行区作业安全专项方案
- 大地的耳朵-阅读答案
- 2021年内江市工会系统招聘笔试试题及答案解析
- 云南省食品经营许可申请表
评论
0/150
提交评论