




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五讲 同余的概念和性质你会解答下面的问题吗?问题1:假设今天是星期日,再过15天就是“六一”儿童节了,问“六一”儿童节是星期几?这个问题并不难答.因为,一个星期有7天,而157=21,即1572+1,所以“六一”儿童节是星期一。问题2:1993年的元旦是星期五,1994年的元旦是星期几?这个问题也难不倒我们.因为,1993年有365天,而365=752+1,所以1994年的元旦应该是星期六。 问题1、2的实质是求用7去除某一总的天数后所得的余数.在日常生活中,时常要注意两个整数用某一固定的自然数去除,所得的余数问题.这样就产生了“同余”的概念.如问题1、2中的15与365除以7后,余数都是1,那么我们就说15与365对于模7同余。同余定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:ab(modm). (*)上式可读作:a同余于b,模m。同余式(*)意味着(我们假设ab):a-b=mk,k是整数,即m(a-b).例如:15365(mod7),因为365-15=350=750。5620(mod9),因为56-20=3694。900(mod10),因为90-090=109。由例我们得到启发,a可被m整除,可用同余式表示为:a0(mod m)。例如,表示a是一个偶数,可以写a0(mod 2)表示b是一个奇数,可以写b1(mod 2) 我们书写同余式的方式,使我们想起等式,而事实上,同余式与等式在其性质上相似.同余式有如下一些性质(其中a、b、c、d是整数,而m是自然数)。性质1:aa(mod m),(反身性)这个性质很显然.因为a-a=0=m0。性质2:若ab(mod m),那么ba(mod m),(对称性)。性质3:若ab(mod m),bc(mod m),那么ac(mod m),(传递性)。性质4:若ab(mod m),cd(mod m),那么acbd(mod m),(可加减性)。性质5:若ab(mod m),cd(mod m),那么acbd(mod m)(可乘性)。性质6:若ab(mod m),那么anbn(mod m),(其中n为自然数)。性质7:若acbc(mod m),(c,m)=1,那么ab(mod m),(记号(c,m)表示c与m的最大公约数)。注意同余式性质7的条件(c,m)1,否则像普通等式一样,两边约去,就是错的。例如610(mod 4),而35(mod 2),因为(2,4)1。请你自己举些例子验证上面的性质。同余是研究自然数的性质的基本概念,是可除性的符号语言。例1 判定288和214对于模37是否同余?解:288-214=74=372。288214(mod37)。例2 求乘积4188141616除以13所得的余数。分析 若先求乘积,再求余数,计算量太大.利用同余的性质可以使“大数化小”,减少计算量。解:4182(mod13),8148(mod13),16164(mod13), 根据同余的性质5可得:41881416162846412(mod13)。答:乘积4188141616除以13余数是12。例3 求14389除以7的余数。分析 同余的性质能使“大数化小”,凡求大数的余数问题首先考虑用同余的性质化大为小.这道题先把底数在同余意义下变小,然后从低次幂入手,重复平方,找找有什么规律。解法1:1433(mod7)14389389(mod 7)8964+16+8+1而322(mod 7),344(mod7),38162(mod 7),3164(mod 7),332162(mod 7),3644(mod 7)。38936431638344235(mod 7),143895(mod 7)。答:14389除以7的余数是5。解法2:证得14389389(mod 7)后,363234241(mod 7),384(36)141(mod 7)。3893843431435(mod 7)。143895(mod 7)。例4 四盏灯如图所示组成舞台彩灯,且每30秒钟灯的颜色改变一次,第一次上下两灯互换颜色,第二次左右两灯互换颜色,第三次又上下两灯互换颜色,这样一直进行下去.请问开灯1小时四盏灯的颜色如何排列?分析 与解答经观察试验我们可以发现,每经过4次互换,四盏灯的颜色排列重复一次,而1小时=60分钟=12030秒,所以这道题实质是求120除以4的余数,因为1200(mod 4),所以开灯1小时四盏灯的颜色排列刚好同一开始一样。十位,上的数码,再设M=a0a1an,求证:NM(mod 9)。分析 首先把整数N改写成关于10的幂的形式,然后利用101(mod 9)。又 11(mod 9),101(mod 9),1021(mod 9),10n1(mod 9),上面这些同余式两边分别同乘以a0、a1、a2、an,再相加得:a0a110+a2102+an10na0a1a2an(mod 9),即 NM(mod 9).这道例题证明了十进制数的一个特有的性质:任何一个整数模9同余于它的各数位上数字之和。以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。例如,求1827496被9除的余数,只要先求(1+827496),再求和被9除的余数。再观察一下上面求和式.我们可以发现,和不一定要求出.因为和式中18,2+7,9被9除都余0,求余数时可不予考虑.这样只需求46被9除的余数.因此,1827496被9除余数是1。有人时常利用十进制数的这个特性检验几个数相加、相减、相乘的结果对不对,这种检查方法叫:弃九法。弃九法最经常地是用于乘法.我们来看一个例子。用弃九法检验乘式5483911749888511是否正确?因为 54835483112(mod 9),911791170(mod 9),所以 54839117200(mod 9)。但是 498885114+98+8+85+1+18(mod9),所以 5483911749888511,即乘积不正确。要注意的是弃九法只能知道原题错误或有可能正确,但不能保证一定正确。例如,987598+7+52(mod 9),487348734(mod 9),324756893+2+4+75+6+8+98(mod 9),这时,987548732432475689(mod 9)。但观察个位数字立刻可以判定9875487332475689.因为末位数字5和3相乘不可能等于9。弃九法也可以用来检验除法和乘方的结果。巩固练习1、某年级有将近400名学生。有一次演出节目排队时出现:如果每8人站成一列则多余1人;如果改为每9人站成一列则仍多余1人;结果发现现成每10人结成一列,结果还是多余1人;聪名的你知道该年级共有学生多少名吗?2、70个数排成一行,除了两头的两个数以外,每个数的三倍恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,1,3,8,21,问这一行数最右边的一个数被6除的余数是几?3、判断427843968267=1697598942346 计算是否正确4. 甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数5. 三个不同的自然数的和为2001,它们分别除以19,23,31所得的商相同,所得的余数也相同,这三个数是_,_,_。6. 在除13511,13903及14589时能剩下相同余数的最大整数是_7、一个家庭,有父、母、兄、妹四人,他们任意三人的岁数之和都是3的整数倍,每人的岁数都是一个质数,四人岁数之和是100,父亲岁数最大,问:母亲是多少岁? 8、有48本书分给两组小朋友,已知第二组比第一组多5人如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够问:第二组有多少人? 9、 学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同请问学校共有多少个班?10、六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买成语大词典一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本这种成语大词典的定价是_元11、求除以17的余数12、已知n是正整数,规定,令,则整数m除以2008的余数为多少?答案1、假设有一名学生不参加演出,则结果一定是不管每列站8人或9人或10人都将刚好站齐。因此此时学生人数应是8、9、10公倍数,而8、9、10的最小公倍数是360,因此可知该年级共有361人。2、思路分析:如果将这70个数一一列出,得到第70个数后,再用它去除以6得余数,总是可以的,但计算量太大。即然这70个数中:中间的一个数的3倍是它两边的数的和,那么它们被6除以后的余数是否有类似的规律呢?0,1,3,8,21,55,144,被6除的余数依次是0,1,3,2,3,1,0,结果余数有类似的规律,继续观察,可以得到:0,1,3,2,3,1,0,5,3,4,3,5,0,1,3,2,3,可以看出余数前12个数一段,将重复出现。702=510,第六段的第十个数为4,这便是原来数中第70个数被6除的余数。3、思路分析:若直接将右边算出,就可判断417843968267=169778335328,可知以上两结果均是错的;但是计算量太大。如果右式和左式相等,则它们除以某一个数余数一定相同。因为求一个数除以9的余数只需要先求这个数数字之和除以9的余数,便是原数除以9的余数。我考虑上式除以9的余数,如果余数不相同,则上式一定不成立。(1)从个位数字可知,右式的个位数字只能是8,而右式个位为6,因此上式不成立。以上是用除9取余数来验证结果是否正确,常被称为弃九法。不过应该注意,用弃九法可发现错误,但用弃九法没找出错误却不能保证原题一定正确。4、(法1)因为 甲乙,所以 甲乙乙乙乙;则乙,甲乙(法2)将余数先去掉变成整除性问题,利用倍数关系来做:从中减掉以后,就应当是乙数的倍,所以得到乙数,甲数5、 设所得的商为,除数为,由,可求得,所以,这三个数分别是,。6、因为, ,由于13511,13903,14589要被同一个数除时,余数相同,那么,它们两两之差必能被同一个数整除,所以所求的最大整数是987、从任意三人岁数之和是3的倍数,100除以3余1,就知四个岁数都是型的数,又是质数只有7,13,19,31,37,43,就容易看出:父43岁,母37岁,兄13岁,妹7岁8、由,知,一组是10或11人同理可知,知,二组是13、14或15人,因为二组比一组多5人,所以二组只能是15人,一组1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-河北-河北房管员一级(高级技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-江西-江西环境监测工五级(初级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-江西-江西垃圾清扫与处理工五级(初级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-江苏-江苏电工三级(高级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-新疆-新疆计算机操作员一级(高级技师)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西水利机械运行维护工四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广东-广东计算机操作员四级(中级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-广东-广东水工闸门运行工二级(技师)历年参考题库含答案解析
- 烹饪肉基础知识培训课件
- 2025年中级卫生职称-主管护师-社区护理(中级)代码:373历年参考题库典型考点含答案解析
- 2024城市轨道交通节能改造EMC合作合同
- 全国职业院校技能大赛中职(大数据应用与服务赛项)考试题及答案
- 实验室检验结果及报告管理制度
- JT∕T 917.2-2014 道路运输驾驶员技能和素质要求 第2部分:货物运输驾驶员
- 新能源汽车动力系统优化
- QCT1170-2022汽车玻璃用功能膜
- 《电力行业职业技能标准 农网配电营业工》
- 第四章 休克病人的护理课件
- 委托合同解除协议书
- 植物生理学课件(王小菁-第8版)-第五章-植物同化物的运输
- 放射工作人员证申请书
评论
0/150
提交评论