




已阅读5页,还剩76页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
练习一实验一二. 熟悉简单的矩阵输入 1.实验代码 A=1,2,3;4,5,6;7,8,9 实验结果 A = 1 2 3 4 5 6 7 8 9 3实验代码 B=9,8,7;6,5,4;3,2,1 C=4,5,6;7,8,9;1,2,3实验结果:B = 9 8 7 6 5 4 3 2 1C = 4 5 6 7 8 9 1 2 34 AA = 1 2 3 4 5 6 7 8 9 BB = 9 8 7 6 5 4 3 2 1 CC = 4 5 6 7 8 9 1 2 3三. 基本序列运算1.A=1,2,3,B=4,5,6A = 1 2 3B = 4 5 6 C=A+BC = 5 7 9 D=A-BD = -3 -3 -3 E=A.*BE = 4 10 18 F=A./BF = 0.2500 0.4000 0.5000 G=A.BG = 1 32 729 stem(A) stem(B) stem(C) stem(D) stem(E) stem(F) stem(G)再举例: a=-1,-2,-3a = -1 -2 -3 b=-4,-5,-6b = -4 -5 -6 c=a+bc = -5 -7 -9 d=a-bd = 3 3 3 e=a.*be = 4 10 18 f=a./bf = 0.2500 0.4000 0.5000 g=a.bg =1.0000 -0.0313 0.0014 stem(a) stem(b) stem(c) stem(d) stem(e) stem(f) stem(g)2. t=0:0.001:10 f=5*exp(-t)+3*exp(-2*t);plot(t,f)ylabel(f(t);xlabel(t);title(1); t=0:0.001:3;f=(sin(3*t)./(3*t);plot(t,f)ylabel(f(t);xlabel(t);title(2); k=0:1:4; f=exp(k);stem(f)四. 利用MATLAB求解线性方程组2. A=1,1,1;1,-2,1;1,2,3b=2;-1;-1x=inv(A)*bA = 1 1 1 1 -2 1 1 2 3b = 2 -1 -1x = 3.0000 1.0000 -2.0000 4. A=2,3,-1;3,-2,1;1,2,1b=18;8;24x=inv(A)*bA = 2 3 -1 3 -2 1 1 2 1b = 18 8 24x = 4 6 8实验二二. 1. k=0:50x=sin(k);stem(x)xlabel(k);ylabel(sinX);title(sin(k)(k); 2. k=-25:1:25x=sin(k)+sin(pi*k);stem(k,x)xlabel(k);ylabel(f(k);title(sink+sink);3. k=3:50x=k.*sin(k);stem(k,x)xlabel(k);ylabel(f(k);title(ksink(k-3);4.%函数function y=f1(k)if k f1=1 1 1 1;f2=3 2 1;conv(f1,f2)ans = 3 5 6 6 3 13.函数定义: function r= pulse( k )if k0 r=0;else r=1;endend 运行代码for k=1:10f1(k)=pulse(k);f2(k)=(0.5k)*pulse(k);endconv(f1,f2)结果ans = Columns 1 through 100.5000 0.7500 0.8750 0.9375 0.9688 0.9844 0.9922 0.9961 0.9980 0.9990 Columns 11 through 200.9995 0.9998 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 Columns 21 through 300.5000 0.2500 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0020 0.0010 Columns 31 through 390.0005 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.00004for i=1:10f1(i)=pulse(i);f2(i)=(-0.5)i)*pulse(i);endconv(f1,f2)结果ans = Columns 1 through 10 -0.5000 -0.2500 -0.3750 -0.3125 -0.3438 -0.3281 -0.3359 -0.3320 -0.3340 -0.3330 Columns 11 through 20 -0.3325 -0.3323 -0.3322 -0.3321 -0.3321 -0.3320 -0.3320 -0.3320 -0.3320 -0.3320 Columns 21 through 30 0.1680 -0.0820 0.0430 -0.0195 0.0117 -0.0039 0.0039 -0.0000 0.0020 0.0010 Columns 31 through 390.0005 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000实验三2clear;x=1,2,3,4,5,6,6,5,4,3,2,1;N=0:11;w=-pi:0.01:pi;m=length(x);n=length(w);for i=1:n F(i)=0; for k=1:m F(i)=F(i)+x(k)*exp(-1j*w(i)*k); endendF=F/10;subplot(2,1,1);plot(w,abs(F),b-);xlabel(w);ylabel(F);title(幅度频谱);gridsubplot(2,1,2);plot(w,angle(F),b-);xlabel(w);X=fftshift(fft(x)/10;subplot(2,1,1);hold on;plot(N*2*pi/12-pi,abs(X),r.);legend(DIFT算法,DFT算法);subplot(2,1,2);hold on;plot(N*2*pi/12-pi,angle(X),r.);xlabel(w);ylabel(相位);title(相位频谱);grid三1.%fun1.mfunction y=fun1(x)if(-pix) & (x0) y=pi+x;elseif (0x) & (xpi) y=pi-x;else y=0end%new.mclear allclcfor i=1:1000 g(i)=fun1(2/1000*i-1); w(i)=(i-1)*0.2*pi;endfor i=1001:10000 g(i)=0; w(i)=(i-1)*0.2*pi;endG=fft(g)/1000;subplot(1,2,1);plot(w(1:50),abs(G(1:50);xlabel(w);ylabel(G);title(DFT幅度频谱);subplot(1,2,2);plot(w(1:50),angle(G(1:50)xlabel(w);ylabel(Fi);title(DFT相位频谱);2.%fun2.mfunction y=fun2(x)if x-1 y=cos(pi*x/2);else y=0;end%new2.mfor i=1:1000 g(i)=fun2(2/1000*i-1); w(i)=(i-1)*0.2*pi;endfor i=1001:10000 g(i)=0; w(i)=(i-1)*0.2*pi;endG=fft(g)/1000;subplot(1,2,1);plot(w(1:50),abs(G(1:50);xlabel(w);ylabel(G);title(幅度频谱);subplot(1,2,2);plot(w(1:50),angle(G(1:50)xlabel(w);ylabel(Fi);title(相位频谱);3.%fun3.mfunction y=fun3(x)if x-1 y=1;elseif x0 & x Ns=1;Ds=1,1;sys1=tf(Ns,Ds)实验结果:sys1 = 1 - s + 1 z,p,k=tf2zp(1,1,1)z = Empty matrix: 0-by-1p = -1k = 12. Ns=10Ds=1,-5,0sys2=tf(Ns,Ds)实验结果:Ns = 10Ds = 1 -5 0sys2 = 10 - s2 - 5 sz,p,k=tf2zp(10,1,-5,0)z = Empty matrix: 0-by-1p = 0 5k =10二已知系统的系统函数如下,用MATLAB描述下列系统。1 z=0;p=-1,-4;k=1;sys1=zpk(z,p,k)实验结果:sys1 = s - (s+1) (s+4) Continuous-time zero/pole/gain model.2. Ns=1,1Ds=1,0,-1sys2=tf(Ns,Ds)实验结果:Ns = 1 1Ds = 1 0 -1sys2 = s + 1 - s2 - 1 Continuous-time transfer function.3 Ns=1,6,6,0;Ds=1,6,8;sys3=tf(Ns,Ds)实验结果:Ns = 1 6 6 0Ds = 1 6 8sys3 = s3 + 6 s2 + 6 s - s2 + 6 s + 8 Continuous-time transfer function.六已知下列H(s)或H(z),请分别画出其直角坐标系下的频率特性曲线。1. clear;for n = 1:400 w(n) = (n-1)*0.05; H(n) = (1j*w(n)/(1j*w(n)+1);endmag = abs(H);phase = angle(H);subplot(2,1,1)plot(w,mag);title(幅频特性)subplot(2,1,2)plot(w,phase);title(相频特性)实验结果:2. clear;for n = 1:400 w(n) = (n-1)*0.05; H(n) = (2*j*w(n)/(1j*w(n)2+sqrt(2)*j*w(n)+1);endmag = abs(H);phase = angle(H);subplot(2,1,1)plot(w,mag);title(幅频特性)subplot(2,1,2)plot(w,phase);title(相频特性)实验结果:3. clear;for n = 1:400 w(n) = (n-1)*0.05; H(n) = (1j*w(n)+1)2/(1j*w(n)2+0.61);endmag = abs(H);phase = angle(H);subplot(2,1,1)plot(w,mag);title(幅频特性)subplot(2,1,2)plot(w,phase);title(相频特性)实验结果:4. clear;for n = 1:400 w(n) = (n-1)*0.05; H(n) =3*(1j*w(n)-1)*(1j*w(n)-2)/(1j*w(n)+1)*(1j*w(n)+2);endmag = abs(H);phase = angle(H);subplot(2,1,1)plot(w,mag);title(幅频特性)subplot(2,1,2)plot(w,phase);title(相频特性)实验结果:实验七三已知下列传递函数H(s)或H(z),求其极零点,并画出极零图。1. z=1,2;p=-1,-2;zplane(z,p)实验结果:2. z=1,2;p=-1,-2;zplane(z,p) num=1;den=1,0;z,p,k=tf2zp(num,den);zplane(z,p) num=1;den=1,0;z,p,k=tf2zp(num,den)zplane(z,p)实验结果:z = Empty matrix: 0-by-1p = 0k = 13. num=1,0,1;den=1,2,5;z,p,k=tf2zp(num,den)zplane(z,p)实验结果:z = 0 + 1.0000i 0 - 1.0000ip = -1.0000 + 2.0000i -1.0000 - 2.0000ik = 14. num=1.8,1.2,1.2,3;den=1,3,2,1;z,p,k=tf2zp(num,den)zplane(z,p)实验结果:z = -1.2284 0.2809 + 1.1304i 0.2809 - 1.1304ip = -2.3247 -0.3376 + 0.5623i -0.3376 - 0.5623ik =1.80005 clear;A=0,1,0; 0,0,1; -6,-11,-6;B=0;0;1;C=4,5,1;D=0;sys5=ss(A,B,C,D);pzmap(sys5)实验结果:五求出下列系统的极零点,判断系统的稳定性。1. clear;A=5,2,1,0; 0,4,6,0; 0,-3,-6,-1;1,-2,-1,3;B=1;2;3;4;C=1,2,5,2;D=0;sys=ss(A,B,C,D);z,p,k=ss2zp(A,B,C,D,1)pzmap(sys)实验结果:z = 4.0280 + 1.2231i 4.0280 - 1.2231i 0.2298 p = -3.4949 4.4438 + 0.1975i 4.4438 - 0.1975i 0.6074 k =28由求得的极点,该系统不稳定。4.z=-3P=-1,-5,-15所以该系统为稳定的。5. num=100*conv(1,0,conv(1,2,conv(1,2,conv(1,3,2,1,3,2);den=conv(1,1,conv(1,-1,conv(1,3,5,2,conv(1,0,2,0,4,1,0,2,0,4);z,p,k=tf2zp(num,den)实验结果:z = 0 -2.0005 + 0.0005i -2.0005 - 0.0005i -1.9995 + 0.0005i -1.9995 - 0.0005i -1.0000 + 0.0000i -1.0000 - 0.0000ip = 1.0000 0.7071 + 1.2247i 0.7071 - 1.2247i 0.7071 + 1.2247i 0.7071 - 1.2247i -1.2267 + 1.4677i -1.2267 - 1.4677i -0.7071 + 1.2247i -0.7071 - 1.2247i -0.7071 + 1.2247i -0.7071 - 1.2247i -1.0000 -0.5466 zplane(z,p)所以该系统不稳定。七已知反馈系统开环转移函数如下,试作其奈奎斯特图,并判断系统是否稳定。1. b=1;a=1,3,2;sys=tf(b,a);nyquist(sys);实验结果:由于奈奎斯特图并未围绕上-1点运动,同时其开环转移函数也是稳定的,由此,该线性负反馈系统也是稳定的。2 b=1;a=1,4,4,0;sys=tf(b,a);nyquist(sys);实验结果:由于奈奎斯特图并未围绕上-1点运动,同时其开环转移函数也是稳定的,由此,该线性负反馈系统也是稳定的。3. b=1;a=1,2,2;sys=tf(b,a);nyquist(sys);实验结果:由于奈奎斯特图并未围绕上-1点运动,同时其开环转移函数也是稳定的,由此,该线性负反馈系统也是稳定的。练习三实验三五1help windowWINDOW Window function gateway. WINDOW(WNAME,N) returns an N-point window of type specified by the function handle WNAME in a column vector. WNAME can be any valid window function name, for example: bartlett - Bartlett window. barthannwin - Modified Bartlett-Hanning window. blackman - Blackman window. blackmanharris - Minimum 4-term Blackman-Harris window. bohmanwin - Bohman window. chebwin - Chebyshev window. flattopwin - Flat Top window. gausswin - Gaussian window. hamming - Hamming window. hann - Hann window. kaiser - Kaiser window. nuttallwin - Nuttall defined minimum 4-term Blackman-Harris window. parzenwin - Parzen (de la Valle-Poussin) window. rectwin - Rectangular window. tukeywin - Tukey window. triang - Triangular window. WINDOW(WNAME,N,OPT) designs the window with the optional input argument specified in OPT. To see what the optional input arguments are, see the help for the individual windows, for example, KAISER or CHEBWIN. WINDOW launches the Window Design & Analysis Tool (WinTool). EXAMPLE: N = 65; w = window(blackmanharris,N); w1 = window(hamming,N); w2 = window(gausswin,N,2.5); plot(1:N,w,w1,w2); axis(1 N 0 1); legend(Blackman-Harris,Hamming,Gaussian); See also bartlett, barthannwin, blackman, blackmanharris, bohmanwin, chebwin, gausswin, hamming, hann, kaiser, nuttallwin, parzenwin, rectwin, triang, tukeywin, wintool. Overloaded functions or methods (ones with the same name in other directories) help fdesign/window.m Reference page in Help browser doc window2.N = 128;w = window(rectwin,N);w1 = window(bartlett,N);w2 = window(hamming,N);plot(1:N,w,w1,w2); axis(1 N 0 1);legend(矩形窗,Bartlett,Hamming);3.wvtool(w,w1,w2)六ts=0.01;N=20;t=0:ts:(N-1)*ts;x=2*sin(4*pi*t)+5*cos(6*pi*t);g=fft(x,N);y=abs(g)/100;figure(1):plot(0:2*pi/N:2*pi*(N-1)/N,y);grid;ts=0.01;N=30;t=0:ts:(N-1)*ts;x=2*sin(4*pi*t)+5*cos(6*pi*t);g=fft(x,N);y=abs(g)/100;figure(2):plot(0:2*pi/N:2*pi*(N-1)/N,y);grid;ts=0.01;N=50;t=0:ts:(N-1)*ts;x=2*sin(4*pi*t)+5*cos(6*pi*t);g=fft(x,N);y=abs(g)/100;figure(3):plot(0:2*pi/N:2*pi*(N-1)/N,y);grid;ts=0.01;N=100;t=0:ts:(N-1)*ts;x=2*sin(4*pi*t)+5*cos(6*pi*t);g=fft(x,N);y=abs(g)/100;figure(4):plot(0:2*pi/N:2*pi*(N-1)/N,y);grid;ts=0.01;N=150;t=0:ts:(N-1)*ts;x=2*sin(4*pi*t)+5*cos(6*pi*t);g=fft(x,N);y=abs(g)/100;figure(5):plot(0:2*pi/N:2*pi*(N-1)/N,y);grid;实验八1%冲激响应 clear;b=1,3;a=1,3,2;sys=tf(b,a);impulse(sys);结果:%求零输入响应 A=1,3;0,-2;B=1;2;Q=ABQ = 4-1 clearB=1,3;A=1,3,2;a,b,c,d=tf2ss(B,A)sys=ss(a,b,c,d);x0=4;-1;initial(sys,x0);grid;a = -3 -2 1 0b = 1 0c = 1 3d = 02.%冲激响应 clear;b=1,3;a=1,2,2;sys=tf(b,a);impulse(sys)%求零输入响应 A=1,3;1,-2;B=1;2;Q=ABQ = 1.6000 -0.2000 clearB=1,3;A=1,2,2;a,b,c,d=tf2ss(B,A)sys=ss(a,b,c,d);x0=1.6;-0.2;initial(sys,x0);grid;a = -2 -2 1 0b = 1 0c = 1 3d = 03.%冲激响应 clear;b=1,3;a=1,2,1;sys=tf(b,a);impulse(sys)%求零输入响应 A=1,3;1,-1;B=1;2;Q=ABQ = 1.7500 -0.2500 clearB=1,3;A=1,2,1;a,b,c,d=tf2ss(B,A)sys=ss(a,b,c,d);x0=1.75;-0.25;initial(sys,x0);grid;a = -2 -1 1 0b = 1 0c = 1 3d = 0二 clear;b=1;a=1,1,1,0;sys=tf(b,a);subplot(2,1,1);impulse(sys);title(冲击响应);subplot(2,1,2);step(sys);title(阶跃响应);t=0:0.01:20;e=sin(t);r=lsim(sys,e,t);figure;subplot(2,1,1);plot(t,e);xlabel(Time);ylabel(A);title(激励信号);subplot(2,1,2);plot(t,r);xlabel(Time);ylabel(A);title(响应信号); 三1. clear;b=1,3;a=1,3,2;t=0:0.08:8;e=exp(-3*t);sys=tf(b,a);lsim(sys,e,t);2. clear;b=1,3;a=1,2,2;t=0:0.08:8;sys=tf(b,a);step(sys)3 clear;b=1,3;a=1,2,1;t=0:0.08:8;e=exp(-2*t);sys=tf(b,a);lsim(sys,e,t);Doc:1. clear;B=1;A=1,1,1;sys=tf(B,A,-1);n=0:200;e=5+cos(0.2*pi*n)+2*sin(0.7*pi*n);r=lsim(sys,e);stem(n,r); 2. clear;B=1,1,1;A=1,-0.5,-0.5;sys=tf(B,A,-1);e=1,zeros(1,100);n=0:100;r=lsim(sys,e);stem(n,r); 练习三实验三五1help windowWINDOW Window function gateway. WINDOW(WNAME,N) returns an N-point window of type specified by the function handle WNAME in a column vector. WNAME can be any valid window function name, for example: bartlett - Bartlett window. barthannwin - Modified Bartlett-Hanning window. blackman - Blackman window. blackmanharris - Minimum 4-term Blackman-Harris window. bohmanwin - Bohman window. chebwin - Chebyshev window. flattopwin - Flat Top window. gausswin - Gaussian window. hamming - Hamming window. hann - Hann window. kaiser - Kaiser window. nuttallwin - Nuttall defined minimum 4-term Blackman-Harris window. parzenwin - Parzen (de la Valle-Poussin) window. rectwin - Rectangular window. tukeywin - Tukey window. triang - Triangular window. WINDOW(WNAME,N,OPT) designs the window with the optional input argument specified in OPT. To see what the optional input arguments are, see the help for the individual windows, for example, KAISER or CHEBWIN. WINDOW launches the Window Design & Analysis Tool (WinTool). EXAMPLE: N = 65; w = window(blackmanharris,N); w1 = window(hamming,N); w2 = window(gausswin,N,2.5); plot(1:N,w,w1,w2); axis(1 N 0 1); legend(Blackman-Harris,Hamming,Gaussian); See also bartlett, barthannwin, blackman, blackmanharris, bohmanwin, chebwin, gausswin, hamming, hann, kaiser, nuttallwin, parzenwin, rectwin, triang, tukeywin, wintool. Overloaded functions or methods (ones with the same name in other directories) help fdesign/window.m Reference page in Help browser doc window2.N = 128;w = window(rectwin,N);w1 = window(bartlett,N);w2 = window(hamming,N);plot(1:N,w,w1,w2); axis(1 N 0 1);legend(矩形窗,Bartlett,Hamming);3.wvtool(w,w1,w2)六ts=0.01;N=20;t=0:ts:(N-1)*ts;x=2*sin(4*pi*t)+5*cos(6*pi*t);g=fft(x,N);y=abs(g)/100;figure(1):plot(0:2*pi/N:2*pi*(N-1)/N,y);grid;ts=0.01;N=30;t=0:ts:(N-1)*ts;x=2*sin(4*pi*t)+5*cos(6*pi*t);g=fft(x,N);y=abs(g)/100;figure(2):plot(0:2*pi/N:2*pi*(N-1)/N,y);grid;ts=0.01;N=50;t=0:ts:(N-1)*ts;x=2*sin(4*pi*t)+5*cos(6*pi*t);g=fft(x,N);y=abs(g)/100;figure(3):plot(0:2*pi/N:2*pi*(N-1)/N,y);grid;ts=0.01;N=100;t
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 狼蒲松龄课件
- 狼疮性肾炎课件
- 农业废弃物资源化利用项目技术集成与应用研究报告
- 历届护士面试题库及答案
- 咖啡连锁品牌在2025年市场布局中的社区商业饮品品牌建设报告
- 铁路货场改扩建项目2025年社会稳定风险评估与风险应对措施研究
- 2025年金融衍生品市场创新风险管理与金融风险管理人才培养计划报告
- 农业物联网在2025年精准种植中的农业资源合理配置报告
- 2026年中国新能源汽车智能化设计研究报告:人机交互篇
- 电商绿色物流包装材料可持续发展现状与挑战报告
- 2024年新人教版数学七年级上册全册课件
- 吉利EV450车型电动汽车控制系统及检修
- 湖北省2025届高三(9月)起点考试 英语试卷(含答案)
- 临床微生物学检验标本的采集和转运试卷
- 销售沟通技巧课件企业培训
- 医学美容技术专业《美容医学咨询与沟通》课程标准
- CJJ105-2005 城镇供热管网结构设计规范
- 营养指导员理论知识考试题库及答案
- 2024生产安全事故隐患排查治理规定(修订征求意见稿)
- 2024年贵州贵安新区产业发展控股集团有限公司招聘笔试参考题库含答案解析
- JB-T 14509-2023 反渗透海水淡化设备技术规范
评论
0/150
提交评论