圆周角(1) (2).docx_第1页
圆周角(1) (2).docx_第2页
圆周角(1) (2).docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2.2 圆周角圆周角(1)【知识与技能】1.理解圆周角的定义,会区分圆周角和圆心角.2.能在证明或计算中熟练运用圆周角的定理.【过程与方法】经历探索圆周角与圆心角的关系的过程,加深对分类讨论和由特殊到一般的转化等数学思想方法的理解.【情感态度】1.在探究过程中体验数学的思想方法,进一步提高探究能力和动手能力.2.通过分组讨论,培养合作交流意识和探索精神.【教学重点】理解并掌握圆周角的概念及圆周角与圆心角之间的关系,能进行有关圆周角问题的简单推理和计算.【教学难点】分类讨论及由特殊到一般的转化思想的应用.一、情境导入,初步认识阅读教材P49-50,回答下列问题.1.如图所示的角中,哪些是圆周角?2.顶点在_上,并且两边都与圆_的角叫做圆周角.3.在同圆或等圆中,_或_所对的圆周角相等,都等于这条弧所对的_的一半.4.在同圆或等圆中,相等的圆周角所对的弧也_.【教学说明】圆周角必须符合两个条件顶点在圆上两边与圆相交.二、思考探究,获取新知探究圆周角定理.1.同学们作出所对的圆周角,和圆心角,学生分组讨论,并回答下列问题:问题1所对的圆周角有几个?问题2度量下这些圆周角的关系.问题3这些圆周角与圆心角AOB的关系.学生解答:【教学说明】所对的圆周角的个数有无数个.通过度量,这些圆周角相等.通过度量,同弧对的圆周角是它所对圆心角的一半.2.同学们思考如何推导上面的问题(3)的结论?教师引导,学生讨论当点O在BAC边AB上,当点O在BAC的内部,当点O在BAC外部.由同学们分组讨论,自己完成.由同学们讨论,代表回答.【教学说明】作直径AE,由BAC=OAC-OAB,由OAC=EOC,OAB=BOE得:BAC=EOC-BOE= (EOC-BOE)=BOC.从得出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.还可以得出下面推论:同圆或等圆中,如果两个圆周角相等,那么它们所对的弧一定相等;3.讲例题:如图,(1)已知.求证:AB=CD.(2)如果AD=BC,求证:.证明:(1),AB=CD.(2)AD=BC,即.【教学说明】在今后证明线段相等的题目中又加了一种有弧相等也可以得到线段相等的方法了.三、运用新知,深化理解1.如图,在O中,AD=DC,则图中相等的圆周角的对数是()A.5对B.6对C.7对D.8对2.如图所示,点A,B,C,D在圆周上,A=65,求D的度数.第2题图第3题图3.如图所示,已知圆心角BOC=100,点A为优弧上一点,求圆周角BAC的度数.4.如图所示,在O中,AOB=100,C为优弧AB的中点,求CAB的度数.【教学说明】在圆中利用同弧所对的圆周角相等推得角相等是灵活对角进行等量转换的关键,要特别注意等弧所对的圆心角也相等.【答案】1.D2.653.504.65四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上.【教学说明】圆周角的定义是基础.圆周角的定理是重点,圆周角定理的推导是难点.圆周角定理的应用才是重中之重.1.教材P56第35题.2.完成同步练习册中本课时的练习.本节课主要学习圆周角的概念及圆周角定理,运用分类讨论的思想对圆周角定理进

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论