




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第12讲 抽屉原理(一) (五年级菁英秋季班)课程目标:掌握抽屉原理课程重点:抽屉原理课程难点:抽屉原理教学方法建议:理论联系实际,可用实物演示。知识要点: 抽屉原理1:将多于件的物品任意放到个抽屉中,那么至少有一个抽屉中的物品不少于2件。 抽屉原理2:将多于件的物品任意放到个抽屉中,那么至少有一个抽屉中的物品不少于件。 理解抽屉原理要注意以下几点:1) 首先要学会构造抽屉,明确物品数要多于抽屉数。2) 不限制把物品放进抽屉里的方法,不规定每个抽屉中放入物品的数量,有的抽屉可以是空的。3) 满足要求的抽屉可能有多个,解题时只需保证有一个达到要求的抽屉就可以了。4) 将件物品放入个抽屉中,(是非零自然数),至少有一个抽屉中的物品数不少于件。典型例题例1 希望小学有500个学生,至少有几个学生在同一天过生日?解答:,112,至少有2人在同一天过生日。点拨:一年中最多有366天(闰年)看作抽屉,500个学生看作物品,至少有2件物品在同一个抽屉中。跟踪练习1有36个学生都是在7月份出生的,至少有几个学生在同一天过生日?例2 参加象棋比赛的380名运动员中,至少有几人属相相同?解答:38012328,32133,至少33人属相相同。点拨:共12种属相看作抽屉,380名运动员看作物品。跟踪练习2把128个小球分别涂上红色、黄色或绿色,至少有几个小球同色?例3 (第11届“华罗庚金杯”少年数学邀请赛初赛试题)自制的一副玩具牌共计52张(含4种牌:红桃、红方、黑桃、黑梅。每种牌都有1点、2点、13点牌各一张)。洗好后背面朝上放好。一次至少抽取 张牌,才能保证其中必定有2张牌的点数和颜色都相同。如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取 张牌。解:(1)去点数互不相同的红色牌和黑色牌各1张,此时没有2张牌得点数和颜色都相同。再取1张牌,即132127(张)牌中必有2张牌得点数和颜色都一样。 (2)点数1,2,4,5,7,8,10,11,13的牌,四种花色各取1张,此时没有3张牌的点数是相同的。再取1张牌,即94137(张)牌中必有3张牌点数相邻。答:(1)取27张牌必有2张牌点数和颜色相同(2)取37牌必有3张牌点数相邻。跟踪练习3在一副扑克牌中,至少要抽出几张才能保证3张牌(不计花色)的点数相同?(A看作1点,J看作11点,Q看作12点,K看作13点)。例4 (第14届北京市小学生“迎春杯”数学竞赛试题)如图从0点起每隔3米种一棵树。如果把3块“爱护树木”的小牌分别挂在3棵树上,那么不管怎么挂,至少有两棵挂牌的树之间的距离 0 3 6 9 12 15 18 21 24是偶数(以米为单位)。试说明理由。 例4图解答:把奇数和偶数看作两个抽屉。3棵挂牌的树离0点距离看作物品,放入两个抽屉里,至少有2个数在同一个抽屉里(即奇偶性相同)。奇数奇数偶数,偶数偶数偶数。由此可知至少有两棵挂牌的树之间的距离是偶数。跟踪练习4体育小组、音乐小组、美术小组同时在学校活动,那么至少有两个小组的人数之和是偶数。试说明理由。例5 (第1届小学“希望杯”全国数学邀请赛五年级试题)新年晚会上,老师让每位同学从一个装有许多玻璃球的口袋中摸两个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分(摸时看不到颜色),结果发现总有两人取的球相同。由此可知,参加取球的至少有 人。解:摸出两个球的颜色看作抽屉,有15种:红红红黄红白红蓝红绿黄黄黄白黄蓝黄绿白白白蓝白绿蓝蓝蓝绿绿绿。参加取球的人看作物品,至少16人才能保证总有两人取的球相同。跟踪练习5幼儿园大班分水果,有苹果、梨和桔子可供选择。每个小朋友允许拿2个水果,结果发现总有两个小朋友拿到的水果相同。那么这个班至少有多少个小朋友?例6 (第10届“华罗庚金杯”少年数学邀请赛试题)用数字1,2,3,4,5,6,填满一个66的方格表,如图所示,每个小方格只填其中的一个数字。将每个22的正方格内的四个数字的和称为这个22正方格的“标示数”。问能否给出一种填法,使任意两个“标示数”均不相同?如果能,请举出一例,如果不能,请说明理由。 例6图解答:不能。每个22正方格内四个数字之和最小是4,最大是24,共有244123(个)不同的数值(看作抽屉)。图中有25个不同的22正方格,即有25个“标示数”(看作物品)。根据抽屉原理,必有两个“标示数”相同。跟踪练习6(第12届“华罗庚金杯”少年数学邀请赛试题)将3,5,7这3个数任意填入66的方格表的小方格中,每个小方格只填1个数。能否使得每行、每列以及两条对角线上所填6个数的和均不相等?如果能,给出一种填数法,如果不能,请说明理由。课堂练习1. 参加田径队的9个小学生来自6个年级,至少有几个学生是同一个年级的?2. 把77粒硬糖装到5个盒子里,至少有多少粒硬糖在同一个盒子里?3. 甲、乙、丙、丁四人各写一个自然数,一定能找出其中两人写的数之差是3的倍数吗?请说明理由。4. 书法小组有18个学生,老师至少要拿多少支笔随意分给学生,才能保证至少有一个学生能得得笔不少于3支?5. 盒子里有黑、白两种颜色的围棋子各100枚。 如果没人从盒子里取出3枚棋子,要保证7人取出的棋子完全相同,至少要有多少人取棋子?6. 用数字1,2,3填满一个88的方格表,如图所示,每个小方格只填其中的一个数字。将每个 第6题图33的正方格内的九个数字之和称为这个33正方格的“幸福数”。能否给出一种填法,使任意两个“幸福数”互不相同?如果能,请举出一例。如果不能,请说 明理由。课外作业1. 把26只鸡关进17只笼子里,至少有几只鸡关在同一只笼子里?2. 用15个筐去装968个苹果,至少有多少个苹果装在同一筐?3. 在一副扑克牌中,至少要抽出几张才能保证有4张牌的点数是相邻的?(A看作1点,J看作11点,Q看作12点,K看作13点)4. 最少要找多少人,才能保证这些人中至少有8人在同一个月里过生日?5. 有足够的篮球和排球,任意分成若干堆,且每堆都有篮球和排球。至少要分成多少堆才能保证其中两堆合成一堆时篮球总数和排球总数都是偶数?请说明理由。6. 老师给幼儿园小班的23个孩子分饼干。至少要拿多少块饼干,才能保证至少有1个孩子分到的饼干不少于5块?7. 箱子里有红球、黄球、白球各50个。如果每人从箱子里取出3个球,要保证有2个人取出的球相同,至少要有多少人取球?8. 数学小组有32本课外书,无论怎么分都有人至少分到4本。这个数学小组最多有几个人?9. 至少要写出几个自然数才能保证从中选出三个数的和能被3整除?请说明理由。10. 将1,2,3这3个数任意填入77的方格表中的 小方格中,每个小方格中填1个数。形如“ ” 的5个方格中的数之和称为“快乐数”,那 么“快乐数”相等的“ ”图形至少有几个? 第10题图第12讲 参考答案跟踪练习1解答:363115,112,至少有2人在同一天过生日。跟踪练习2解答:1283422,42143,至少有43个小球同色。跟踪练习3解:2132129(张)。答:至少抽出29张才能保证3张牌点数相同。跟踪练习4解答:每个小组的人数不是奇数就是偶数,至少有两个小组的人数同为奇数或同为偶数,其和是偶数。跟踪练习5解答:抽屉6个,苹果、苹果 苹果、梨 苹果、桔子 梨、梨 梨、桔子 桔子、桔子,至少7个小朋友才能保证总有2人拿到的水果相同。跟踪练习6解答:六个方格中的数之和最小是18,最大是42,且一定是偶数,共有(个)可能值(看作抽屉)。6行、6列和2条对角线中填的6个数之和有66214(个)(看作物品),其中必有2个相等。课堂练习1. 2 提示:9613,112。2. 16 提示:775152,15116.3. 一定能。被3除的余数有0,1,2三种情况(看作抽屉),四个数放入三个抽屉,必有二个数在同一抽屉,其差是3的倍数。4. 37 提示:218137(支)。5. 25 提示:取出围棋子有4种可能的情况:全黑,全白,一黑一白,一 白一黑。4(71)125(人)。6. 不能。每个33正方格内九个数字之和最小是9,最大是27,共有279119(个)不同的数值(看作抽屉)。图中共有36个不同的33正方格,即有36个“幸福数”(看作物品)。根据抽屉原理,必有两个“幸福数”相同。课外作业1. 2 提示:261719,112(只)。2. 65 提示:96815648,64165(个)。3. 43 提示:点数1,2,3,5,6,7,9,10,11,13的牌各取1张,大、小王各 取1张,然后再任取1张,即取出1042143(张)时,必有4张牌 点数相邻。4. 85 提示:(81)12185(人)。5. 至少分成5堆。因为每堆中篮球数和排球数的奇偶性有如下4种可能的情况:奇、奇 奇、偶 偶、奇 偶、偶(看作抽屉),分成5堆(看作物品)至少有2堆篮球数的奇偶性相同,排球数的奇偶性相同。奇数奇数偶数。偶数偶数偶数。这两堆合成一堆时,篮球总数是偶数,排球总数是偶数。6. 93 提示:(51)23193(块)。7. 11 提示:三个球的颜色搭配有10种情况:全红全黄全白一红一黄一 红二白一黄二红一黄二白一白二红一白二黄一红一黄一白,101 1(人)。8. 10 提示:32(41)102.9. 至少写出5个自然数,才能保证从中选出3个数的和能被3整除。被3除的余数有0,1,2三种(看作抽屉)。如果5个数在三个抽
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 晨光文具店营销方案策划
- 提供建筑方案设计流程
- 学校师德师风建设工作五年规划
- 建筑工程施工现场消防安全方案
- 员工培训管理实施细则
- 建筑方案设计前期分析论文
- 营销推广方案服装店文案
- 2025年注册会计师(CPA)考试 企业并购重组科目冲刺押题试卷及重点解读
- 精密机械行业分析报告
- 《函数的概念与性质》九年级数学代数教学方案
- 护理礼仪(第3版) 课件 第四章 护士仪态礼仪
- 【课件】平衡功能的训练
- 认识中国特色社会主义文化
- 供电所所长讲安全课
- 餐饮外卖智能调度与配送优化方案
- 社保局工伤培训
- 成都地理课件
- 创面封闭负压引流管护理技术
- 2024年WPS计算机二级考试题库350题(含答案)
- 骨关节课件教学课件
- 煤矿防治水细则解读
评论
0/150
提交评论