




免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
正弦函数、余弦函数的图象和性质典型例题分析 例1 用五点法作下列函数的图象(1)y=2-sinx,x0,2解 (1)(图2-14)(2)(图2-15)描点法作图:例2 求下列函数的定义域和值域解 (1)要使lgsinx有意义,必须且只须sinx0,解之,得 2kx(2k+1),kZ又0sinx1, -lgsinx0定义域为(2k,(2k+1)(kZ),值域为(-,0的取值范围,进而再利用三角函数线或函数图象,求出x的取值范围。利用单位圆(或三角函数图象)解得(2)由读者自己完成,其结果为例4 求下列函数的最大值与最小值:(2)y=2cos2x+5sinx-4=-2sin2x+5sinx-2sinx-1,1,例5 求下列函数的值域|cosx|1 cox2x1说明 上面解法的实质是从已知关系式中,利用|cosx|1消去x,从而求出y的范围例6 比较下列各组数的大小分析 化为同名函数,进而利用增减性来比较函数值的大小解 (1)sin194=sin(180+14)=-sin14cos160=cos(180-20)=-cos20=-sin700147090,sin14sin70,从而 -sin14-sin70,即sin194cos160而y=cosx在0,上是减函数,故由01.391.471.5可得cos1.5cos1.47cos1.39例7 求下列函数的单调区间解(1)设u=2x当u(2k-1),2k(kZ)时,cosu递增;当u2k,(2k+1)(kZ)时,cosu递减例8 下列函数中是奇函数的为(D)为奇函数,应选(D)函数不具有奇偶性说明 奇(偶)函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 实验小学突发停电事故应急预案10篇
- 水表井安全知识培训内容课件
- 人防物资调配与储存管理方案
- 小学五年级英语上册Unit5单元重难点知识速记与巧练(含答案)
- 氢能产业园氢能燃料电池商业化推广策略
- 隧道水文勘察与分析
- 学生宿舍节能减排技术应用方案
- 建筑工程项目施工现场卫生管理方案
- 水电站安全知识培训内容课件
- 知识点3.2造型要素设计构成设计造型75课件
- 生物制品生产工艺过程变更管理技术指导原则
- 建筑施工现场签证单(模板)
- GBZ(卫生) 49-2014职业性噪声聋的诊断
- GB/T 9729-2007化学试剂氯化物测定通用方法
- GB/T 7588.2-2020电梯制造与安装安全规范第2部分:电梯部件的设计原则、计算和检验
- GB/T 13560-2017烧结钕铁硼永磁材料
- 三视图及尺寸标注课件
- 混凝土配合比验证检验委托书模板
- 住房公积金投诉申请书
- 众辰变频器说明书3400
- 小学教师量化考核表
评论
0/150
提交评论