二次函数销售中利润最大问题.docx_第1页
二次函数销售中利润最大问题.docx_第2页
二次函数销售中利润最大问题.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数销售问题求最大利润问题的教学设计一、学生知识状况分析学生的知识技能基础:学生已经掌握了二次函数的三种表示方式和性质。学生的活动经验基础:在前面对二次函数的研究中,学生研究了二次函数的图象和性质,掌握了研究二次函数常用的方法。二、教学任务分析“怎样获得最大利润”似乎是商家才应该考虑的问题,但是这个问题的数学模型正是我们研究的二次函数的范畴。二次函数化为顶点式后,很容易求出最大或最小值。而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题。因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践。即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释。具体地,本节课的教学目标是:(一)知识与技能1、能根据实际问题建立二次函数关系式,并探求出何时刻,实际问题可取得理想值,增强学生解决实际问题的能力。2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。(二)过程与方法 经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力。(三)情感态度与价值观 1、体会数学与人类社会的密切联系,了解数学的价值。增进对数学的理解和学好数学的信心。2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值三、教学过程分析本节课设计了六个教学环节:复习回顾、创设问题情境讲授新课、巩固练习、实践应用、课堂小结、课后作业。第一环节复习回顾活动内容:1复习二次函数yax2+bx+c的相关性质:顶点坐标、对称轴、最值等。2复习这节课所要用的其他相关知识:利润=售价进价,总利润=每件利润销售额活动目的:为后面新课作准备第二环节创设问题情境,引入新课活动内容:(有关利润的问题)问题1:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映,如果调整价格,每涨价1元,每星期少卖10件。已知商品的进价为每件40元,要想获得6090元的利润,该商品应定价为多少元? 分析:设销售单价上调了x元,那么每件商品的利润可表示为_ 元,每周的销售量可表示为 _件,一周的利润可表示为_元,要想获得6090元利润可列方程_. 问题2:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映,如果调整价格,每涨价1元,每星期少卖10件。已知商品的进价为每件40元,该商品应定价为多少元时,商场能获得最大利润?问题3:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映,如果调整价格,每降价1元,每星期多卖20件。已知商品的进价为每件40元,该商品应定价为多少元时,商场能获得最大利润?问题4:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映,如果调整价格,每涨价1元,每星期少卖10件;每降价1元,每星期多卖20件。已知商品的进价为每件40元,该商品应定价为多少元时,商场能获得最大利润?讨论涨价与降价都有可能获得最大利润吗?需要分类讨论吗?1涨价情况下最大利润是多少?想一想:若每件涨价x元则此商品(1)每件利润为元。(2)每星期销售额可以表示为;(3)所获利润可以表示为;(4)当销售单价是元时,可以获得最大利润,最大利润是这是一个有实际意义的问题,要想解决它,就必须寻找出问题本身所隐含的一些关系,并把这些关系用数学的语言表示出来。设每星期所获利润为y元,则y=(60-40+x )(300-10x)=-10x2+100x+6000=-10(x-5)2+6250。当x=5时y的最大值是6250即当 在涨价情况下,涨价5元,定价65元时,每星期所获利润最大,最大利润是6250元。2、在降价情况下,最大利润又是多少?我们用类似的方法进行分析:设每件降价x元,所获利润为y元,则有y=(60-40-x )(300+20x)=-20(x-2.5)2+6125所以,当x=2.5时,y的最大值为6125.即在降价情况下,降价2.5元,定价57.5元时,利润最大,最大利润是6125元。综合以上两种情况,定价为65元时可获得最大利润为6250元.活动目的:通过这个实际问题,让学生感受到二次函数是一类最优化问题的数学模型,并感受数学的应用价值。在这里帮助学生分析和表示实际问题中变量之间的关系,帮助学生领会有效的思考和解决问题的方法,学会思考、学会分析,是教学的一个重要内容。解决这类题目的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围; (2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.第三环节巩固练习我来当老板!1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在半个月内获得最大利润?解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x) (0x20) =-20(x-5)2+4500 当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元第四环节实践应用活动内容:2.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x之间的函数关系式,并注明x的取值范围; (2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?第五环节课堂小结 本节课经历了探索商品销售中最大利润等问题的过程,体会了二次函数是一类

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论