




已阅读5页,还剩100页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
常用质量管理方法 工具 北京科立特管理咨询公司 第一部分 数据分布特征第二部分 QC老七种工具第三部分 QC新七种工具第四部分 统计过程控制第五部分 统计推断第六部分 回归分析第七部分 方差分析第八部分 试验设计 主要内容 第五部分 统计推断 数据与推断 推断统计在统计方法中的地位 统计方法 描述统计 参数估计 假设检验 推断统计 统计推断的过程 一 总体与个体 二 样本 三 统计量与抽样分布 统计基础知识 一 样本与统计量 1 有序样本2 描述样本的中心位置的统计量 1 样本均值 2 样本中位数 3 众数3 描述样本数据分散程度的统计量 1 样本极差 2 样本 无偏 方差 3 样本标准差 4 变异系数4 几个常用的抽样分布 二 常用统计量 一 点估计 一 点估计的概念 二 矩法估计 三 点估计优劣的评选标准1 无偏性2 有效性3 正态总体参数的无偏估计二 区间估计 一 区间估计的概念 二 正态总体参数的置信区间 三 比例P的置信区间 参数估计 定义及其作用 定义 参数估计是从样本出发 针对不同的问题 人为构造适当的统计量 根据这些统计量的值 预测总体参数值 参数估计包括点估计和区间估计 点估计是根据样本结果 估计总体参数值的大小 而区间估计 是以一定的概率估计总体参数值的范围 参数估计基本方法 一 点估计二 点估计的优良性准则区间估计 参数估计的方法 被估计的总体参数 点估计 点估计 概念要点 1 从总体中抽取一个样本 根据该样本的观察值对总体的未知参数作出一个数值点的估计2 点估计没有给出估计值接近总体未知参数程度的信息例如 用样本均值作为总体未知均值的估计值就是一个点估计点估计的方法有矩估计法 顺序统计量法 最大似然法 最小二乘法等 1 用于估计总体某一参数的随机变量如样本均值 样本比例 样本中位数等例如 样本均值就是总体均值 的一个估计量如果样本均值 x 3 则3就是 的估计值2 理论基础是抽样分布 估计量 概念要点 估计量的优良性准则 无偏性 无偏性 抽样分布的均值等于总体均值 估计量的优良性准则 有效性 有效性 如果与其他任何无偏估计量相比 样本均值更接近总体均值 我们就称样本均值是个更有效的估计量 估计量的优良性准则 一致性 一致性 随样本容量的增加 样本均值与总体均值间的差异缩小 区间估计 区间估计 概念要点 根据一个样本的观察值给出总体参数的估计范围给出了总体未知参数落在这一区间的概率例如 总体均值落在50 70之间 置信度为95 置信区间估计 内容 落在总体均值某一区间内的样本 总体未知参数落在区间内的概率 表示为 1 为显著性水平 是总体参数未在区间内的概率 常用的显著性水平值有99 95 90 相应的 为0 01 0 05 0 10 置信水平 区间与置信水平 均值的抽样分布 影响区间宽度的因素 1 数据的离散程度 用 来测度 样本容量 置信水平 1 影响Z的大小 总体均值和总体比例的区间估计 一 总体均值的区间估计二 总体比例的区间估计样本容量的确定 总体均值的区间估计 已知 总体均值的置信区间 已知 1 假定条件总体服从正态分布 且总体方差 已知 如果不是正态分布 可以由正态分布来近似 n 30 使用正态分布统计量 总体均值 在1 置信水平下的置信区间为 总体均值的区间估计 正态总体 实例 解 已知 N 0 152 x 2 14 n 9 1 0 95 2 1 96总体均值 的置信区间为 我们可以95 的概率保证该种零件的平均长度在21 302 21 498mm之间 例 某种零件长度服从正态分布 从该批产品中随机抽取 件 测得其平均长度为21 4mm 已知总体标准差 0 15mm 试建立该种零件平均长度的置信区间 给定置信水平为0 95 总体均值的区间估计 非正态总体 实例 解 已知 x 26 0 15 n 9 1 0 95 2 1 96 我们可以95 的概率保证平均每天参加锻炼的时间在24 824 27 176分钟之间 例 某大学从该校学生中随机抽取1000人 调查到他们平均每天参加体育锻炼的时间为26分钟 试以95 的置信水平估计该大学全体学生平均每天参加体育锻炼的时间 已知总体方差为36小时 总体均值的区间估计 未知 总体均值的置信区间 未知 1 假定条件总体方差 未知总体必须服从正态分布使用t分布统计量 3 总体均值 在1 置信水平下的置信区间为 总体均值的区间估计 实例 解 已知 N 2 x 50 s 8 n 25 1 0 95 t 2 2 0639 我们可以95 的概率保证总体均值在46 69 53 30之间 例 从一个正态总体中抽取一个随机样本 n 25 其均值 x 50 标准差s 8 建立总体均值m的95 的置信区间 总体比例的区间估计 总体比例的置信区间 1 假定条件两类结果总体服从二项分布可以由正态分布来近似使用正态分布统计量 3 总体比例 的置信区间为 总体比例的置信区间 实例 我们可以95 的概率保证该企业职工由于同管理人员不能融洽相处而离开的比例在63 6 76 4 之间 例 某企业在一项关于职工流动原因的研究中 从该企业前职工的总体中随机选取了200人组成一个样本 在对其进行访问时 有140人说他们离开该企业是由于同管理人员不能融洽相处 试对由于这种原因而离开该企业的人员的真正比例构造95 的置信区间 样本容量的确定 根据均值区间估计公式可得样本容量n为 估计总体均值时样本容量的确定 样本容量n与总体方差 2 允许误差 可靠性系数Z之间的关系为与总体方差成正比与允许误差成反比 其中 样本容量的确定 实例 解 已知 2 1800000 0 05 Z 2 1 96 500 应抽取的样本容量为 例 一家广告公司想估计某类商店去年所花的平均广告费用有多少 经验表明 总体方差约为 如置信度取95 并要使估计处在总体平均值附近500元的范围内 这家广告公司应抽多大的样本 1 根据比例区间估计公式可得样本容量n为 估计总体比例时样本容量的确定 其中 样本容量的确定 实例 例 一家市场调研公司想估计某地区有彩色电视机的家庭所占的比例 该公司希望对比例p的估计误差不超过0 05 要求的可靠程度为95 应抽多大容量的样本 没有可利用的p估计值 应抽取的样本容量为 两个总体均值及两个总体比例之差估计 一 两个总体均值之差估计二 两个总体比例之差估计 两个总体均值之差的估计 两个样本均值之差的抽样分布 两个总体均值之差的估计 1 2已知 1 假定条件两个样本是独立的随机样本 两个总体都服从正态分布 若不是正态分布 可以用正态分布来近似 n1 30和n2 30 两个独立样本均值之差的抽样分布服从正态分布 其标准误差为 3 两个总体均值之差 1 2在1 置信水平下的置信区间为 两个总体均值之差的估计 实例 例 一个银行负责人想知道储户存入两家银行的钱数 他从两家银行各抽取了一个由25个储户组成的随机样本 样本均值如下 银行A 4500元 银行B 3250元 设已知两个总体服从方差分别为 A2 2500和 B2 3600的正态分布 试求 A B的区间估计 1 置信度为95 2 置信度为99 B A 两个总体均值之差的估计 计算结果 解 已知xA N A 2500 xB N B 3600 xA 4500 xB 3250 A2 2500 B2 3600nA nB 25 1 A B置信度为95 的置信区间为 2 A B置信度为99 的置信区间为 两个总体均值之差的估计 1 2未知 但相等 假定条件两个总体都服从正态分布 12 12未知 12 12总体方差 2的联合估计量为 估计量x1 x2的标准差为 两个总体均值之差的估计 1 2未知 但相等 两个总体均值之差 1 2在1 置信水平下的置信区间为 两个总体均值之差的估计 实例 例 为比较两位银行职员为新顾客办理个人结算账目的平均时间长度 分别给两位职员随机安排了10位顾客 并记录下了为每位顾客办理账单所需的时间 单位 分钟 相应的样本均值和方差分别为 x1 22 2 s12 16 63 x2 28 5 s22 18 92 假定每位职员办理账单所需时间均服从正态分布 且方差相等 试求两位职员办理账单的服务时间之差的95 的区间估计 两个总体均值之差的估计 计算结果 解 已知x1 N 1 2 x2 N 2 2 x1 22 2 x2 28 5 s12 16 63s22 18 92n1 n2 10 12 12 1 2置信度为95 的置信区间为 两个总体均值之差的估计 1 2未知 且不相等 假定条件两个总体都服从正态分布 12 12未知 12 12 两个总体均值之差的估计 1 2未知 且不相等 两个总体均值之差 1 2在1 置信水平下的置信区间为 两个总体均值之差的估计 续前例 例 为比较两位银行职员为新顾客办理个人结算账目的平均时间长度 分别给两位职员随机安排了10位顾客 并记录下了为每位顾客办理账单所需的时间 单位 分钟 相应的样本均值和方差分别为 x1 22 2 s12 16 63 x2 28 5 s22 18 92 假定每位职员办理账单所需时间均服从正态分布 但方差不相等 试求两位职员办理账单的服务时间之差的95 的区间估计 两个总体均值之差的估计 计算结果 自由度f为 1 2置信度为95 的置信区间为 解 已知x1 N 1 2 x2 N 2 2 x1 22 2 x2 28 5 s12 16 63s22 18 92n1 n2 10 12 12 两个总体比例之差的估计 1 假定条件两个总体是独立的两个总体服从二项分布若不是正态分布 可以用正态分布来近似2 两个总体均值之差p1 p2在1 置信水平下的置信区间为 两个总体比例之差的区间估计 两个总体比例之差的估计 实例 例 某饮料公司对其所做的报纸广告在两个城市的效果进行了比较 它们从两个城市中分别随机地调查了1000个成年人 其中看过广告的比例分别为p1 0 18和p2 0 14 试求两城市成年人中看过广告的比例之差的95 的置信区间 两个总体比例之差的估计 计算结果 p1 p2置信度为95 的置信区间为 我们有95 的把握估计量城市成年人中看过该广告的比例之差在0 79 7 21 之间 0721 0 0079 0 1000 14 0 1 14 0 1000 18 0 1 18 0 96 1 14 0 18 0 正态方差及两正态总体方差比的估计 一 正态总体方差的区间估计二 两个正态总体方差比的区间估计 正态总体方差的区间估计 正态总体方差的区间估计 要点 1 估计一个总体的方差或标准差 2 假设总体服从正态分布 3 总体方差 2的点估计量为S2 且 4 总体方差在1 置信水平下的置信区间为 正态总体方差的区间估计 例 对某种金属的10个样品组成的一个随机样本作抗拉强度试验 从实验数据算出的方差为4 试求 2的95 的置信区间 正态总体方差的区间估计 计算结果 解 已知n 10s2 41 95 2置信度为95 的置信区间为 两个正态总体方差比的区间估计 两个正态总体方差比的区间估计 要点 1 比较两个总体的方差比 用两个样本的方差比来判断 如果S12 S22接近于1 说明两个总体方差很接近 如果S12 S22远离1 说明两个总体方差之间存在差异 总体方差比在1 置信水平下的置信区间为 两个正态总体方差比的区间估计 实例 例 用某一特定工序生产的一批化工产品中的杂质含量的变异依赖于操作过程中处理的时间长度 某生产商拥有两条生产线 为了降低产品中杂质平均数量的同时降低杂质的变异 对两条生产线进行了很小的调整 研究这种调整是否确能达到目的 为此从两条生产线生产的两批产品中各随机抽取了25个样品 它们的均值和方差为 x1 3 2 S12 1 04 x2 3 0 S22 1 04试确定两总体方差比 12 12的90 的置信区间 两个正态总体方差比的区间估计 计算结果 解 已知 x1 3 2 S12 1 04 x2 3 0 S22 1 04F1 2 24 24 F0 95 1 98F 2 24 24 F0 05 0 51 12 22置信度为90 的置信区间为 一 基本思想与基本步骤 一 假设检验问题 二 假设检验的基本步骤1 建立假设2 选择检验统计量 给出拒绝的形式3 给出显著性水平 常取 0 054 定出临界值c 写出拒绝域W5 判断二 正态总体参数的假设检验 一 正态均值 的假设检验 已知 二 正态均值 的假设检验 未已知 三 正态方差 2的假设检验 四 小结与例子三 有关比例P的假设检验 假设检验 定义及其作用 定义 假设检验是根据实际问题的要求 提出一个关于随机变量 或质量特性值 的一种论断 然后根据样本的有关信息 以一定的概率对这个论断的真伪进行判断 假设检验的应用场合及步骤 假设检验可用于各种场合 其思路是根据实际问题的要求提出一个关于质量特性值的论断 称为原假设 然后 根据样本的有关信息 对原假设的真伪进行判断 假设检验的应用产和及步骤 在假设检验里 要提出原假设 同时根据实际问题提出原假设的对立面 称为备择假设 原假设用H0表示 备择假设用H1表示 第一类错误 原假设H0本来正确 但我们却拒绝了H0 认为H0是不正确的 这种错误发生的概率通常以 表示 第二类错误 原假设H0本来不正确 但我们却接受了H0 认为H0是正确的 这种错误发生的概率通常用 表示 假设检验的应用产和及步骤 在实际问题中 一般总是控制犯第一种错误的概率 的大小通常取为0 01 0 05等数值 而不考虑犯第二类错误的概率 并将 称为假设检验的显著性水平 假设检验的应用场合及步骤 假设检验的步骤 分析问题 提出H0和H1确定显著性水平 和统计量 拒绝域计算统计量 假设检验的应用场合及步骤 总体平均值的检验 适用场合检验规则总体平均值的检验规则如表17 1 正态总体均值检验表 t0 t n 1 u0 u 0 0 t0 t1 n 1 u0 u1 0 0 0 0 在显著水平 下拒绝H0 若 方差为未知 统计量 方差为已知 统计量 H1 H0 n x u 0 0 s m 2 s 2 s n s x t 0 0 m 2 1 0 u u a 1 n t t 2 1 0 a 假设检验的应用场合及步骤 总体平均值的检验 检验步骤 例1 某厂生产的不锈钢产品的抗拉强度以前服从均值为 0 72 0kg mm2标准差为 0 2 0kg mm2的正态分布 生产过程中 对机器进行了调整 为确定机器调整对产品质量特性的影响 随机抽样10个 测其抗拉强度为76 2 78 3 76 4 74 7 72 6 78 4 75 7 70 2 73 3 74 2 单位 kg mm2 问机器调整后 产品的抗拉强度是否有了变化 机器调整前后 总体方差不变 解 总体标准差为 0 2 0kg mm2 已知 以前总体均值为 0 72 0kg mm2 第一步 假设H0 0 72 0 H1 72 0 0 05第二步 计算统计量 解 第三步 检验 0 05 u1 2 u1 0 025 u0 075 1 96 u0 u1 2 所以拒绝H0 第四步 结论机器调整后 有95 的 把握 认为 产品的抗拉强度确实发生了变化 案例演示 机器调整后 有95 的 把握 认为 不锈钢的抗拉强度确实发生了变化 假设检验的应用场合及步骤 总体方差的检验 适用场合检验规则从数学形式上讨论 对方差的检验可以有 表17 2一个正态总体方差检验表 假设检验的应用场合及步骤 总体方差的检验 检验步骤 例 工厂为了降低成本 想变更零件的材质 用原来材质生产的零件外径标准差是0 38mm 材质变更后 随机抽样10个零件 测其直径为 34 52 35 08 34 88 35 71 33 98 34 96 35 17 35 26 34 77 35 47 问零件外径方差是否有所变化 解 总体均值 为未知 以前总体标准差为 0 0 38mm第一步 假设第二步 计算统计量 98 14 38 0 1636 2 S 2 2 0 2 0 s c 1 i 1636 2 98 34 47 35 98 34 52 34 X X S 2 2 2 10 i L 98 34 10 47 35 08 35 52 34 x L 05 0 H H 2 0 2 1 2 0 2 0 a s s s s 解 第三步 检验不能拒绝H0 也就是接受H0 第四步 结论改变了材质后 零件外径的方差没有显著变大 显著性水平0 05 也即 有95 的 把握 认为零件外径的方差没有变化 和现有的材质一致 案例演示 材质改变后 有95 的 把握 认为 零件外径的方差没有发生变化 和现有的材质一致 参数估计的应用场合及步骤 参数估计包括点估计和区间估计 点估计的方法很多 我们通常采用数字特征法 也就是以样本的平均值来估计总体的平均值 以样本的方差来估计总体的方差 在一定的置信度下 估计参数的范围叫做置信区间 参数估计的应用场合及步骤 总体平均值 点估计一个正态总体平均值的点估计为 式中表示总体均值的估计值 其上面的 符号表示参数的估计值 下同 表示样本的平均值 参数估计的应用场合及步骤 总体平均值 区间估计 规定双侧规范限时总体方差 2已知时 在显著性水平 下 总体均值 的置信区间为 总体方差 2未知时 在显著性水平 下 总体均值 的置信区间为 例3 在例1中 试对机器调整后的产品抗拉强度进行估计 例1 某厂生产的不锈钢产品的抗拉强度以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年《煤矿安全规程》培训考试题库及答案
- 2025年文化事业单位招聘考试综合类无领导小组讨论面试真题模拟试卷
- 2025年事业单位招聘考试综合类职业能力倾向测验真题模拟试卷(教育学)
- 2025年湖北省事业单位教师招聘考试教育心理学试卷答案
- 科技成果转化合作协议履行保证承诺书6篇
- 2025年天津市事业单位招聘考试教育类专业知识真题模拟训练试题
- 虚拟现实工艺还原-洞察与解读
- 鹤壁市中招考试卷及答案
- 河南家政考试题库及答案
- 食品溯源链技术-洞察与解读
- 职业培训班级管理制度
- 乡镇网络安全管理制度
- 高处坠落伤的急救与护理
- 第一章第二节《孟德尔自由组合定律应用9331变形及致死现象》课件-人教版必修二
- 吐鲁番市恒泽煤化工有限公司60万吨-年焦化项目环评报告
- 高层建筑施工安全风险评估
- DB31/T 1093-2018混凝土砌块(砖)用再生骨料技术要求
- 资金代处理协议书
- 培训机构教务老师工作计划
- 2025新人教版美术一年级下册《难忘的童年》教学设计教案
- 《乐东黎族自治县国土空间总体规划 (2020-2035)》
评论
0/150
提交评论