二次函数与一元二次方程 (2).docx_第1页
二次函数与一元二次方程 (2).docx_第2页
二次函数与一元二次方程 (2).docx_第3页
二次函数与一元二次方程 (2).docx_第4页
二次函数与一元二次方程 (2).docx_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数与一元二次方程教学设计兴仁县马马崖镇马场中学 陈庭豪一、教学内容分析:1、教学目标知识与技能:总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根;会利用二次函数的图象求一元二次方程的近似解。过程与方法:经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。情感态度价值观:通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想。2、重点、难点分析:重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解。难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。二、教学过程设计:(一)创设情境、导入新课问题1 以 40m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线。如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h20t-5t2。考虑以下问题(1)球的飞行高度能否达到 15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到 20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到 20.5m?为什么?(4)球从飞出到落地要用多少时间?分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2。所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值;否则,说明球的飞行高度不能达到问题中h的值。解:(1)解方程 1520t-5t2。t2-4t+3=0。t11,t23。答:当球飞行1s和3s时,它的高度为 15m。(2)解方程 2020t-5t2。t2t2-4t+40。t1t22。答:当球飞行2s时,它的高度为 20m。(3)解方程 20.520t-5t2。t2-4t+4.10。因为(4)244.1 0只有一个交点有两个相等的实数根b2-4ac = 0没有交点没有实数根b2-4ac 0;(2)有一个交点 b2 4ac= 0;(3)没有交点 b2 4ac0,c0。5.利用函数图象求方程x2-2x-2=0的实数根(精确到0.1)(三)归纳总结一般地,从二次函数yax2+bx+c的图象可知,(1)如果抛物线yax2bxc与x轴有公共点,公共点的横坐标是x0,那么当xx0时,函数的值是0,因此xx0就是方程ax2bxc0的一个根。(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。由上面的结论,我们可以利用二次函数的图象求一元二次方程的根。由于作图或观察可能存在误差,由图象求得的根,一般是近似的。三、作业布置1.若抛物线 y=x2 + bx+ c 的顶点在第一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论