江西省名校(临川一中、南昌二中)2019届高三数学5月联合考试题理(含解析).docx_第1页
江西省名校(临川一中、南昌二中)2019届高三数学5月联合考试题理(含解析).docx_第2页
江西省名校(临川一中、南昌二中)2019届高三数学5月联合考试题理(含解析).docx_第3页
江西省名校(临川一中、南昌二中)2019届高三数学5月联合考试题理(含解析).docx_第4页
江西省名校(临川一中、南昌二中)2019届高三数学5月联合考试题理(含解析).docx_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省名校(临川一中、南昌二中)2019届高三数学5月联合考试题 理(含解析)注意事项:1.本试卷分第卷(选择题)和第卷(非选择题)两部分,满分150分,考试时间120分钟 2.答题前,考生务必将自己的姓名,准考证号填图在答题卡相应的位置。一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D. 【答案】B【解析】【分析】先化简集合A,B,再求得解.【详解】,所以.故选:B【点睛】本题主要考查集合的化简和交集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.复数,若复数, 在复平面内的对应点关于虚轴对称,则( )A. B. C. D. 【答案】A【解析】【分析】由题意可知,据此结合复数的乘法运算法则计算的值即可.【详解】由题意可知,所以,故选A【点睛】本题主要考查复数的乘法运算,复数的对称性,属于基础题.3.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不正确是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A. 互联网行业从业人员中90后占一半以上B. 互联网行业中从事技术岗位的人数超过总人数的20%C. 互联网行业中从事产品岗位的90后人数超过总人数的5%D. 互联网行业中从事运营岗位的90后人数比80前人数多【答案】D【解析】【分析】本道题分别将各个群体的比例代入,即可。【详解】A选项,可知90后占了56%,故正确;B选项,技术所占比例为39.65%,故正确;C选项,可知90后明显比80多前,故正确;D选项,因为技术所占比例,90后和80后不清楚,所以不一定多,故错误。故选D。【点睛】本道题考查了统计方面的知识,关键抓住各个群体的比例,逐一分析,得出结论,即可,难度较容易。4.已知数列为各项均为正数的等比数列,是它的前项和,若,且,则=( )A. 32B. 31C. 30D. 29【答案】B【解析】【分析】根据已知求出,再求出公比和首项,最后求.【详解】因为,所以.因为,所以.所以,所以.故选:B【点睛】本题主要考查等比数列的通项的基本量的计算,考查等比中项的应用,考查等比数列的前n项和的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.执行如图的程序框图,则输出的值是( )A. B. C. D. 【答案】D【解析】【分析】模拟执行程序框图,依次写出每次循环得到的x,y的值,当 时,不满足条件退出循环,输出x的值即可得解【详解】解:模拟执行程序框图,可得.满足条件,执行循环体,;满足条件,执行循环体, ;满足条件,执行循环体,;满足条件,执行循环体, ;观察规律可知,x的取值周期为3,由于,可得:满足条件,执行循环体,当 ,不满足条件,退出循环,输出x的值为2故选:D【点睛】本题主要考查了循环结构的程序框图,依次写出每次循环得到的x,y的值,根据循环的周期,得到跳出循环时x的值是解题的关键6.在ABC中,则 ( )A. B. C. D. 【答案】A【解析】【分析】由题得以P为的重心,再求出,求出的值得解.【详解】因为所以P为的重心,所以,所以,所以因为,所以故选:A【点睛】本题主要考查三角形的重心的性质,考查三角形的减法法则和数乘向量,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.我国古代九章算术将上下两个平行平面为矩形的六面体称为刍童.如图是一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和6,高为2,则该刍童的体积为( )A. B. C. 27D. 18【答案】B【解析】【分析】由题得几何体为正四棱台,再利用棱台的体积公式求解.【详解】由题意几何体原图为正四棱台,底面的边长分别为2和6,高为2,所以几何体体积.故选:B【点睛】本题主要考查三视图还原几何体原图,考查棱台体积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.2019年4月25日-27日,北京召开第二届“一带一路”国际高峰论坛,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数为 ( )A. 198B. 268C. 306D. 378【答案】A【解析】【分析】根据题意,分两种情况讨论,3人中有2名中国记者和1名国外记者,求出不同的提问方式的种数;3人中有1名中国记者和2名国外记者,求出不同的提问方式的种数,由分类计数原理相加即得答案【详解】分两种情况,若选两个国内媒体一个国外媒体,有种不同提问方式;若选两个外国媒体一个国内媒体,有种不同提问方式,所以共有种提问方式.故选:A.【点睛】本题主要考查排列组合的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.已知x,则“x”是“sin(sinx)cos(cosx)成立”的( )A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件【答案】C【解析】试题分析:当x时,sinxcosx所以0sinxcosx于是sin(sinx)sin(cosx)cos(cosx),充分性成立.取x,有sin(sinx)sin()sin0cos(cosx)cos()cos0所以sin(sinx)cos(cosx)也成立,必要性不成立故选C考点:三角函数的性质,充要条件10.在中,则( )A. B. C. D. 【答案】B【解析】【分析】设求出,再利用正弦定理求解.【详解】设所以,所以,所以,得所以故选:B【点睛】本题主要考查向量的数量积,考查余弦定理和正弦定理边角互化,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.过双曲线的右支上一点,分别向圆和圆作切线,切点分别为,则的最小值为( )A. 10B. 13C. 16D. 19【答案】B【解析】试题分析:由题可知,因此,故选B考点:圆锥曲线综合题12.不等式对任意恒成立,则实数的取值范围( )A. B. C. D. 【答案】D【解析】【分析】本题首先可以将“不等式对任意恒成立”转化为“对恒成立”,然后求出方程,的最小值即可得出结果。【详解】题意即为对恒成立,即对恒成立,从而求,的最小值,而故即当时,等号成立,方程在内有根,故,所以,故选D。【点睛】本题主要考查不等式的相关性质,在利用不等式求参数的取值范围时,可以先将参数提取到单独的一侧,然后通过求解函数的最值来求解参数的取值范围,考查函数方程思想,考查计算能力,是难题。二、填空题:本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.13.若,的展开式中常数项为_【答案】112【解析】【分析】先求出n的值,再利用二项式展开式的通项求常数项得解.详解】,的展开式的通项为,令.所以展开式的常数项为.故答案为:112【点睛】本题主要考查定积分的计算,考查二项式展开式的常数项的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.已知实数满足则的最大值为_【答案】4【解析】【分析】先作出不等式组对应可行域,再利用数形结合分析求解.【详解】由题得不等式组对应的可行域如图所示,由题得z=x+y,所以y=-x+z,直线的纵截距为z.当直线y=-x+z经过点A时,直线的纵截距最大,z最大.联立得A(2,2),所以.故答案为:4【点睛】本题主要考查线性规划求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.15.设,将的图像向右平移个单位长度,得到的图像,若是偶函数,则的最小值为_【答案】【解析】【分析】先化简函数f(x),再求出,由题得,给k赋值即得解.【详解】,将的图像向右平移个单位长度得到,因为函数g(x)是偶函数,所以,所以故答案为:【点睛】本题主要考查三角恒等变换和图像的变换,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.设函数,若方程有12个不同的根,则实数的取值范围为_【答案】【解析】 得x=3,x=1,由f(x)0得x1或x3,即函数在(,3),(1,+)单调递增,由f(x)0得3x1,则函数在(3,1)单调递减,则函数的极大值为f(3)=9,函数的极小值为,根据函数的图象可知,设|f(x)|=m,可知m2+tm+1=0,原方程有12个不同的根,则m2+tm+1=0方程应在内有两个不同的根,设h(m)=m2+tm+1,则 所以取值的范围故答案为:。点睛:本题主要考查函数与方程的应用,求函数的导数判断函数的极值和单调性,以及利用换元法转化为一元二次函数是解决本题的关键综合性较强,难度较大一般这种成为复合函数方程的根,分别设内层外层函数,内外层单独研究。三.解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知数列有,是它的前项和,且(1)求证:数列为等差数列.(2)求的前项和.【答案】(1)见解析;(2)【解析】【分析】(1)先化简已知得,再求出,再证明数列为等差数列;(2)对n分奇数和偶数两种情况讨论得解.详解】(1)当时,所以,两式对应相减得,所以又n=2时,所以,所以,所以数列为等差数列.(2)当为偶数时,当为奇数时,综上:【点睛】本题主要考查等差数列性质的证明,考查等差数列求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.已知空间几何体中,与均为边长为的等边三角形,为腰长为的等腰三角形,平面平面,平面平面.(1)试在平面内作一条直线,使直线上任意一点与的连线均与平面平行,并给出详细证明;(2)求直线与平面所成角的正弦值.【答案】(1)见解析;(2)【解析】【分析】(1)如图所示:取BC和BD的中点H、G,连接HG.HG为所求直线.证明平面AHG|平面CDE,原题即得证;(2)以CD中点O为坐标原点,OD所在直线为x轴,OB所在直线为Y轴,OE所在直线为Z轴,建立空间直角坐标系,利用向量法求直线与平面所成角的正弦值.【详解】如图所示:取BC和BD的中点H、G,连接HG.HG为所求直线.所以,因为平面平面,,所以,取CD中点O,连接EO,因为平面平面,所以,所以AH|EO,又平面CDE,平面CDE,所以.因为,所以,因为,则,所以直线HG上任意一点与的连线均与平面平行.(2)以CD中点O为坐标原点,OD所在直线为x轴,OB所在直线为Y轴,OE所在直线为Z轴,建立空间直角坐标系.,设所以.所以直线与平面所成角的正弦值为.【点睛】本题主要考查空间几何元素位置关系的证明,考查线面角的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.每年七月份,我国J地区有25天左右的降雨时间,如图是J地区S镇2000-2018年降雨量(单位:mm)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:(1)假设每年的降雨天气相互独立,求S镇未来三年里至少有两年的降雨量不超过350mm的概率;(2)在S镇承包了20亩土地种植水果的老李过去种植的甲品种水果,平均每年的总利润为31.1万元而乙品种水果的亩产量m(kg/亩)与降雨量之间的关系如下面统计表所示,又知乙品种水果的单位利润为32-0.01m(元/kg),请帮助老李排解忧愁,他来年应该种植哪个品种的水果可以使利润(万元)的期望更大?(需说明理由);降雨量100,200)200,300)300,400)400,500)亩产量500700600400【答案】(1) ;(2)乙品种杨梅的总利润较大.【解析】【分析】(1)由频率分布直方图中矩形面积和为1,计算第四组的频率,再求出第三组矩形面积的一半,求和即可求出对应的概率值,再利用独立重复试验概率公式可得结果;(2)根据直方图求随机变量的概率,可得随机变量的分布列,求出乙品种杨梅的总利润的数学期望,与过去种植的甲品种杨梅平均每年的总利润为28万元比较得出结论和建议.【详解】(1)频率分布直方图中第四组的频率为该地区在梅雨季节的降雨量超过的概率为所以该地区未来三年里至少有两年梅雨季节的降雨量超过的概率为(或.)(2)据题意,总利润为元,其中.所以随机变量(万元)的分布列如下表: 273531.222.4 0.20.40.30.1故总利润(万元)的期望 (万元)因为,所以老李应该种植乙品种杨梅可使总利润(万元)的期望更大.【点睛】本题主要考查频率分布直方图的应用以及离散型随机变量的分布列与期望,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(4)直方图左右两边面积相等处横坐标表示中位数.20.已知两定点,点是平面内的动点,且,记的轨迹是(1)求曲线的方程;(2)过点引直线交曲线于两点,设,点关于轴的对称点为,证明直线过定点.【答案】(1);(2)见解析【解析】【分析】设,根据条件列方程化简即可;(2)先探究特殊性,当点Q为椭圆的上顶点(0,)时,直线RN过定点P(4,0).再讨论一般情形,设直线l:点R,N,P三点共线,因此直线RN经过定点P(4,0).详解】(1)设,则,由于,即,设,则,点的轨迹是以,为焦点的椭圆,故,所以,动点的轨迹的方程为:如图所示,先探究特殊性,当点Q为椭圆的上顶点(0,)时,直线l:,联立直线和椭圆方程得,直线RN:令y=0,得x=4,所以直线RN过定点P(4,0).下面证明一般情形:设直线l:联立,判别式所以即,设,于是,又,解得,所以,所以点R,N,P三点共线,因此直线RN经过定点P(4,0).综上,直线RN经过定点P(4,0).【点睛】本题主要考查轨迹方程的求法和椭圆的定义,考查椭圆中的定点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.已知函数(1)若,求证:(2)若,恒有,求实数的取值范围.【答案】(1)见解析;(2)(,0【解析】【分析】(1)利用导数求x0时,f(x)的极大值为,即证(2)等价于k,x0,令g(x),x0,再求函数g(x)的最小值得解.【详解】(1)函数f(x)x2e3x,f(x)2xe3x+3x2e3xx(3x+2)e3x由f(x)0,得x或x0;由f(x)0,得,f(x)在(,)内递增,在(,0)内递减,在(0,+)内递增,f(x)的极大值为,当x0时,f(x)(2)x2e3x(k+3)x+2lnx+1,k,x0,令g(x),x0,则g(x),令h(x)x2(1+3x)e3x+2lnx1,则h(x)在(0,+)上单调递增,且x0+时,h(x),h(1)4e310,存在x0(0,1),使得h(x0)0,当x(0,x0)时,g(x)0,g(x)单调递减,当x(x0,+)时,g(x)0,g(x)单调递增,g(x)在(0,+)上的最小值是g(x0),h(x0)+2lnx01=0,所以,令,令所以=1,,g(x0) 实数k的取值范围是(,0【点睛】本题主要考查利用证明不等式,考查利用导数求最值和解答不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.22.选修44:坐标系与参数方程 在平面直角坐标系xOy中,曲线C1过点P(a,1),其参数方程为(t为参数,aR),以O为极点,x轴非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为cos24cos0(1)求曲线C1的普通方程和曲线C2的直角坐标方程;(2)已知曲线C1和曲线C2交于A,B两点,且|PA|2|PB|

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论