2019届高考数学复习统计与统计案例10.3相关性最玄乘估计与统计案例学案文北师大版.docx_第1页
2019届高考数学复习统计与统计案例10.3相关性最玄乘估计与统计案例学案文北师大版.docx_第2页
2019届高考数学复习统计与统计案例10.3相关性最玄乘估计与统计案例学案文北师大版.docx_第3页
2019届高考数学复习统计与统计案例10.3相关性最玄乘估计与统计案例学案文北师大版.docx_第4页
2019届高考数学复习统计与统计案例10.3相关性最玄乘估计与统计案例学案文北师大版.docx_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

10.3变量间的相关关系、统计案例最新考纲考情考向分析1.会作两个相关变量的数据的散点图,会利用散点图认识变量间的相关关系2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程3.了解独立性检验的基本思想、方法及其初步应用4.了解回归分析的基本思想、方法及简单应用.回归分析,独立性检验是全国卷高考重点考查的内容,必考一个解答题,选择、填空题中也会出现主要考查回归方程,相关系数,利用回归方程进行预测,独立性检验的应用等.1相关性(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图(2)从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为曲线拟合(3)若两个变量x和y的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关的,若所有点看上去都在某条曲线(不是一条直线)附近波动,则称此相关是非线性相关的如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的2线性回归方程(1)最小二乘法如果有n个点(x1,y1),(x2,y2),(xn,yn),可以用y1(abx1)2y2(abx2)2yn(abxn)2来刻画这些点与直线yabx的接近程度,使得上式达到最小值的直线yabx就是所要求的直线,这种方法称为最小二乘法(2)线性回归方程方程ybxa是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),(xn,yn)的线性回归方程,其中a,b是待定参数3回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法(2)样本点的中心对于一组具有线性相关关系的数据(x1,y1),(x2,y2),(xn,yn)中,(,)称为样本点的中心(3)相关系数r;当r0时,表明两个变量正相关;当r2.706时,有90%的把握判定变量A,B有关联;当23.841时,有95%的把握判定变量A,B有关联;当26.635时,有99%的把握判定变量A,B有关联题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)相关关系与函数关系都是一种确定性的关系,也是一种因果关系()(2)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系()(3)只有两个变量有相关关系,所得到的回归模型才有预测价值()(4)某同学研究卖出的热饮杯数y与气温x()之间的关系,得线性回归方程y2.352x147.767,则气温为2时,一定可卖出143杯热饮()(5)事件X,Y关系越密切,则由观测数据计算得到的2值越大()题组二教材改编2为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视在检验这些学生眼睛近视是否与性别有关时,用下列哪种方法最有说服力()A回归分析 B均值与方差C独立性检验 D概率答案C解析“近视”与“性别”是两类变量,其是否有关,应用独立性检验判断3下面是22列联表:y1y2合计x1a2173x2222547合计b46120则表中a,b的值分别为()A94,72 B52,50 C52,74 D74,52答案C解析a2173,a52.又a22b,b74.4某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验根据收集到的数据(如下表),由最小二乘法求得回归方程y0.67x54.9.零件数x(个)1020304050加工时间y(min)62758189现发现表中有一个数据看不清,请你推断出该数据的值为_答案68解析由30,得0.673054.975.设表中的“模糊数字”为a,则62a758189755,a68.题组三易错自纠5某医疗机构通过抽样调查(样本容量n1 000),利用22列联表和2统计量研究患肺病是否与吸烟有关计算得24.453,经查阅临界值表知P(23.841)0.05,现给出四个结论,其中正确的是()A在100个吸烟的人中约有95个人患肺病B若某人吸烟,那么他有95%的可能性患肺病C有95%的把握认为“患肺病与吸烟有关”D只有5%的把握认为“患肺病与吸烟有关”答案C解析由已知数据可得,有10.0595%的把握认为“患肺病与吸烟有关”6在一次考试中,5名学生的数学和物理成绩如下表:(已知学生的数学和物理成绩具有线性相关关系)学生的编号i12345数学成绩x8075706560物理成绩y7066686462现已知其线性回归方程为y0.36xa,则根据此线性回归方程估计数学得90分的同学的物理成绩为_(四舍五入到整数)答案73解析70,66,所以660.3670a,a40.8,即线性回归方程为y0.36x40.8.当x90时,y0.369040.873.273.题型一相关关系的判断1观察下列各图形,其中两个变量x,y具有相关关系的图是()A B C D答案C解析由散点图知中的点都分布在一条直线附近中的点都分布在一条曲线附近,所以中的两个变量具有相关关系2(2018广州质检)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)的条形统计图以下结论不正确的是()A逐年比较,2008年减少二氧化硫排放量的效果最显著B2007年我国治理二氧化硫排放显现成效C2006年以来我国二氧化硫年排放量呈减少趋势D2006年以来我国二氧化硫年排放量与年份正相关答案D解析从2006年,将每年的二氧化硫排放量与前一年作差比较,得到2008年二氧化硫排放量与2007年排放量的差最大,A选项正确;2007年二氧化硫排放量较2006年降低了很多,B选项正确;虽然2011年二氧化硫排放量较2010年多一些,但自2006年以来,整体呈递减趋势,C选项正确;自2006年以来我国二氧化硫年排放量与年份负相关,D选项错误,故选D.3x和y的散点图如图所示,则下列说法中所有正确命题的序号为_x,y是负相关关系;在该相关关系中,若用yc1ec2x拟合时的相关系数为r1,用ybxa拟合时的相关系数为r2,则r1r2;x,y之间不能建立线性回归方程答案解析在散点图中,点散布在从左上角到右下角的区域,因此x,y是负相关关系,故正确;由散点图知用yc1ec2x拟合比用ybxa拟合效果要好,则r1r2,故正确;x,y之间可以建立线性回归方程,但拟合效果不好,故错误思维升华 判定两个变量正,负相关性的方法(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关(2)相关系数:r0时,正相关;r0时,正相关;b0时,负相关题型二线性回归分析典例 (2017全国)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm)下面是检验员在一天内依次抽取的16个零件的尽寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得i9.97,s0.212, 18.439,(xi)(i8.5)2.78,其中xi为抽取的第i个零件的尺寸,i1,2,16.(1)求(xi,i)(i1,2,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(3s,3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查从这一天抽检的结果看,是否需对当天的生产过程进行检查?在(3s,3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差(精确到0.01)附:样本(xi,yi)(i1,2,n)的相关系数r,0.09.解(1)由样本数据得(xi,i)(i1,2,16)的相关系数r0.18,由于|r|0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(2)由于9.97,s0.212,因此由样本数据可以看出抽取的第13个零件的尺寸在(3s,3s)以外,因此需对当天的生产过程进行检查剔除离群值,即第13个数据,剩下数据的平均数为(169.979.22)10.02,因此这条生产线当天生产的零件尺寸的均值的估计值为10.02.160.2122169.9721 591.134,剔除第13个数据,剩下数据的样本方差为(1 591.1349.2221510.022)0.008,因此这条生产线当天生产的零件尺寸的标准差的估计值为0.09.思维升华 线性回归分析问题的类型及解题方法(1)求线性回归方程利用公式,求出回归系数b,a.待定系数法:利用回归直线过样本点的中心求系数(2)利用回归方程进行预测,把线性回归方程看作一次函数,求函数值(3)利用回归直线判断正、负相关;决定正相关还是负相关的是系数b.(4)回归方程的拟合效果,可以利用相关系数判断,当|r|越趋近于1时,两变量的线性相关性越强跟踪训练 (2018惠州月考)以下是某地收集到的新房屋的销售价格y和房屋的面积x的数据:房屋面积x(m2)11511080135105销售价格y(万元)24.821.618.429.222(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中画出回归直线;(3)根据(2)的结果估计当房屋面积为150 m2时的销售价格解(1)数据对应的散点图如图所示:(2)xi109, (xi)21 570,23.2, (xi)(yi)308.设所求线性回归方程为ybxa,则b0.196 2,ab23.21090.196 21.814 2.故所求线性回归方程为y0.196 2x1.814 2.(3)根据(2),当x150时,销售价格的估计值为y0.196 21501.814 231.244 231.2(万元)题型三独立性检验典例 (2017全国)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量50 kg箱产量50 kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较附:P(2k)0.0500.0100.001k3.8416.63510.8282.解(1)旧养殖法的箱产量低于50 kg的频率为(0.0120.0140.0240.0340.040)50.62.因此,事件A的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表如下:箱产量6.635,故有99%的把握认为箱产量与养殖方法有关(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg到55 kg之间,旧养殖法的箱产量平均值(或中位数)在45 kg到50 kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法思维升华 (1)比较几个分类变量有关联的可能性大小的方法通过计算2的大小判断:2越大,两变量有关联的可能性越大通过计算|adbc|的大小判断:|adbc|越大,两变量有关联的可能性越大(2)独立性检验的一般步骤根据样本数据制成22列联表根据公式2计算2的值比较2与临界值的大小关系,作统计推断跟踪训练 (2017石家庄质检)微信是现代生活进行信息交流的重要工具,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信的时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中有是青年人(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出22列联表:青年人中年人合计经常使用微信不经常使用微信合计(2)根据22列表中的数据利用独立性检验的方法判断是否有99.9%的把握认为“经常使用微信与年龄有关”?附:2.P(2k)0.0100.001k6.63510.828解(1)由已知可得,该公司员工中使用微信的有20090%180(人)经常使用微信的有18060120(人),其中青年人有12080(人),使用微信的人中青年人有18075%135(人),故22列联表如下:青年人中年人合计经常使用微信8040120不经常使用微信55560合计13545180(2)将列联表中数据代入公式可得:213.333,由于13.33310.828,所以有99.9%的把握认为“经常使用微信与年龄有关”求线性回归方程的方法技巧典例 (12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份20062008201020122014需求量/万吨236246257276286(1)利用所给数据求年需求量与年份之间的线性回归方程ybxa;(2)利用(1)中所求出的线性回归方程预测该地2018年的粮食需求量思想方法指导 回归分析是处理变量相关关系的一种数学方法主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观测值,预测变量的取值及判断变量取值的变化趋势;(3)求出线性回归方程规范解答解(1)由所给数据看出,年需求量与年份之间近似直线上升,下面来求线性回归方程,先将数据处理如下表.年份201042024需求257211101929对处理的数据,容易算得0,3.2,4分b6.5,ab3.2.6分由上述计算结果,知所求线性回归方程为y2576.5(x2010)3.2,即y6.5(x2010)260.2.8分(2)利用所求得的线性回归方程,可预测2018年的粮食需求量大约为6.5(20182010)260.26.58260.2312.2(万吨)12分1两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关系数r如下,其中拟合效果最好的模型是()A模型1的相关系数r为0.98B模型2的相关系数r为0.80C模型3的相关系数r为0.50D模型4的相关系数r为0.25答案A解析相关系数r越大,拟合效果越好,因此模型1拟合效果最好2(2018洛阳月考)为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算20.99,根据这一数据分析,下列说法正确的是()A有99%的人认为该电视栏目优秀B有99%的人认为该电视栏目是否优秀与改革有关系C有99%的把握认为该电视栏目是否优秀与改革有关系D没有理由认为该电视栏目是否优秀与改革有关系答案D解析只有26.635才能有99%的把握认为该电视栏目是否优秀与改革有关系,而即使26.635也只是对“该电视栏目是否优秀与改革有关系”这个论断成立的可能性大小的结论,与是否有99%的人等无关故只有D正确3对具有线性相关关系的变量x,y有一组观测数据(xi,yi)(i1,2,8),其线性回归方程是yxa,且x1x2x3x82(y1y2y3y8)6,则实数a的值是()A. B. C. D.答案B解析依题意可知样本点的中心为,则a,解得a.4(2017山东)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其线性回归方程为ybxa.已知xi225,yi1 600,b4.该班某学生的脚长为24,据此估计其身高为()A160 B163 C166 D170答案C解析xi225,xi22.5.yi1 600,yi160.又b4,ab160422.570.线性回归方程为y4x70.将x24代入上式,得y42470166.故选C.5(2018湖南永州模拟)已知x与y之间的几组数据如下表:x123456y021334假设根据上表数据所得的线性回归方程为ybxa.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为ybxa,则以下结论正确的是()Abb,aa Bbb,aaCba Dbb,aa答案C解析由两组数据(1,0)和(2,2)可求得直线方程为y2x2,b2,a2.而利用线性回归方程的公式与已知表格中的数据,可求得b,ab,所以ba.6某地2009年至2015年中,每年的人口总数y(单位:万)的数据如下表:年份2009201020112012201320142015年份代号t0123456人口总数y888991011若t与y之间具有线性相关关系,则其回归直线ybta一定过点()A(3,9) B(9,3)C(6,14) D(4,11)答案A解析(0123456)3,(888991011)9,所以回归直线ybta一定过点(3,9)7某市居民20102014年家庭年平均收入x(单位:万元)与年平均支出y(单位:万元)的统计资料如下表所示:年份20102011201220132014收入x11.512.11313.315支出y6.88.89.81012根据统计资料,居民家庭年平均收入的中位数是_,家庭年平均收入与年平均支出有_相关关系(填“正”或“负”)答案13正解析中位数是13.由相关性知识,根据统计资料可以看出,当年平均收入增多时,年平均支出也增多,因此两者之间具有正相关关系8以下四个命题,其中正确的序号是_从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;两个随机变量相关性越强,则相关系数的绝对值越接近于1;在线性回归方程y0.2x12中,当自变量x每增加一个单位时,因变量y平均增加0.2个单位;对分类变量X与Y的统计量2来说,2越小,“X与Y有关系”的把握程度越大答案解析是系统抽样;对于,统计量2越小,说明两个相关变量有关系的把握程度越小9为了判断高中三年级学生选修文科是否与性别有关,现随机抽取50名学生,得到如图所示22列联表:理科文科总计男131023女72027总计203050已知P(23.841)0.05,P(25.024)0.025.根据表中数据,得到24.844,则有_的把握认为选修文科与性别有关答案95%解析由题意,24.844,因为5.0244.8443.841,所以有95%的把握认为选修文科与性别有关10某单位为了了解用电量y(度)与气温x()之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温()1813101用电量(度)24343864由表中数据得线性回归方程ybxa中的b2,预测当气温为4 时,用电量约为_度答案68解析根据题意知10,40,因为回归直线过样本点的中心,所以a40(2)1060,所以当x4时,y(2)(4)6068,所以用电量约为68度11某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y2.93.33.64.44.85.25.9(1)求y关于t的线性回归方程;(2)利用(1)中的线性回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2018年农村居民家庭人均纯收入附:回归直线的斜率和截距的最小二乘估计公式分别为:b,ab.解(1)由所给数据计算得(1234567)4,(2.93.33.64.44.85.25.9)4.3,(ti)2941014928,(ti)(yi)(3)(1.4)(2)(1)(1)(0.7)00.110.520.931.614,b0.5,ab4.30.542.3,所求线性回归方程为y0.5t2.3.(2)由(1)知,b0.50,故2009年至2015年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元将2018年的年份代号t10代入(1)中的线性回归方程,得y0.5102.37.3,故预测该地区2018年农村居民家庭人均纯收入为7.3千元12(2017西安质检)某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:月收入(单位:百元)15,25)25,35)35,45)45,55)55,65)65,75)赞成定价者人数123534认为价格偏高者人数4812521(1)若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差异是多少(结果保留2位小数);(2)由以上统计数据填下面22列联表,分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”月收入不低于55百元的人数月收入低于55百元的人数总计认为价格偏高者赞成定价者总计附:2.P(2k)0.050.01k3.8416.635解(1)“赞成定价者”的月平均收入为x150.56.“认为价格偏高者”的月平均收入为x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论