变量与函数(1) (6).doc_第1页
变量与函数(1) (6).doc_第2页
变量与函数(1) (6).doc_第3页
变量与函数(1) (6).doc_第4页
变量与函数(1) (6).doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

变量与函数(学案)学习目标:1、通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义; 2、学会用含一个变量的代数式表示另一个变量;3、结合实例,理解函数的概念以及自变量的意义;在理解掌握函数概念的基础上,确定函数关系式;4、会根据函数解析式和实际意义确定自变量的取值范围。学习重点:了解常量与变量的意义;理解函数概念和自变量的意义;确定函数关系式。学习难点:函数概念的理解;函数关系式的确定学习过程:一、 提出问题,创设情景问题一:一辆汽车以60千米小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时 请同学们根据题意填写下表:t/时12345ts/千米 在以上这个过程中,变化的量是_不变化的量是_ 试用含t的式子表示s_s=_t的取值范围是 这个问题反映了匀速行驶的汽车所行驶的路程_随行驶时间_的变化过程二、 深入探究,得出结论(一)问题探究:问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元怎样用含x的式子表示y ? 请同学们根据题意填写下表:售出票数(张)早场150午场206晚场310x收入y (元)2在以上这个过程中,变化的量是_不变化的量是_试用含x的式子表示y_y=_x的取值范围是 这个问题反映了票房收入_随售票张数_的变化过程问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律如果弹簧原长10cm,每1kg重物使弹簧伸长05cm,设重物质量为mkg,受力后的弹簧长度为L cm,怎样用含m的式子表示L? 1请同学们根据题意填写下表:所挂重物(kg)12345m受力后的弹簧长度L(cm)2在以上这个过程中,变化的量是_不变化的量是_试用含m的式子表示L_L=_m的取值范围是 这个问题反映了_随_的变化过程问题四:圆的面积和它的半径之间的关系是什么?要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30 cm2呢?怎样用含有圆面积的式子表示圆半径r? 关系式:_请同学们根据题意填写下表:面积s(cm2)102030s半径r(cm)在以上这个过程中,变化的量是_不变化的量是_试用含s的式子表示r_r=_s的取值范围是 这个问题反映了_ _ 随_ _的变化过程问题五:用10m长的绳子围成矩形,试改变矩形的长度,观察矩形的面积怎样变化记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。设矩形的长为xm,面积为m2,怎样用含有x的式子表示呢? 请同学们根据题意填写下表:长x(m)1234x面积s(m2)在以上这个过程中,变化的量是_不变化的量是_试用含x的式子表示s _x的取值范围是 这个问题反映了矩形的_ _ 随_ _的变化过程小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问题,在这些变化过程中,有些量的值是按照某种规律变化的(如),有些量的数值是始终不变的(如)。(二)得出结论: 在一个变化过程中,我们称数值发生变化的量为_; 在一个变化过程中,我们称数值始终不变的量为_;三、问题引申,探索概念 (一)观察探究:1、在前面研究的每个问题中,都出现了_个变量,它们之间是相互影响,相互制约的2、同一个问题中的变量之间有什么联系?(请同学们自己分析“问题一”中两个变量之间的关系,进而再分析上述所有实例中的两个变量之间是否有类似的关系)归纳:上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有_确定的值与其对应。3、其实,在一些用图或表格表达的问题中,也能看到两个变量间有上述这样的关系我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图其中图上点的横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量在心电图中,对于x的每一个确定的值,y都有唯一确定的对应值吗?中国人口数统计表年份人口数亿19841034198911061994117619991252(2)在下面的我国人口数统计表中,年份与人口数 可以记作两个变量x与y,对于表中每一个确定的年份(x),都对应着一个确定的人口数(y)吗?中国人口数统计表 (二)归纳概念: 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是_,y是x的_如果当x=a时y=b,那么b叫做当自变量的值为a时的_举例说明:问题一问题二问题三问题四问题五自变量自变量的函数函数解析式四、课堂练习,巩固概念1、若球体体积为,半径为,则3其中变量是_、_,常量是_自变量是 , 是 的函数,R的取值范围是 2、校园里栽下一棵小树高18米,以后每年长03米,则n年后的树高L与年数n之间的函数关系式_其中变量是_、_,常量是_自变量是 , 是 的函数,n的取值范围是 3、在男子1500米赛跑中,运动员的平均速度v= ,则这个关系式中变量是_、_,常量是_自变量是 , 是 的函数,自变量的取值范围是 4、已知2x-3y=1,若把y看成x的函数,则可以表示为_其中变量是_、_,常量是_自变量是 , 是 的函数,x的取值范围是 5、等腰ABC中,AB=AC,则顶角y与底角x之间的函数关系式为_其中变量是_、_,常量是_自变量是 , 是 的函数,x的取值范围是 6、汽车开始行驶时油箱内有油40升,如果每小时耗油5升,则油箱内剩余油量升与行驶时间t小时的关系是_其中变量是_、_,常量是_自变量是 , 是 的函数,t的取值范

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论