




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
变风量空调系统设计孙宁 清华大学 热能工程系(100084 北京清华大学热能系空调教研组)摘要 讨论了变风量(VAV)空调系统设计中的新风、噪声、气流组织、房间正压、末端装置的选择以及系统控制方法等几个主要问题,并提出一些建议,供参考。变风量(VAV)系统简介变风量系统(Variable Air Volume System, VAV系统)本世纪60年代诞生在美国。VAV技术的基本原理很简单,就是通过改变送入房间的风量来满足室内变化的负荷。由于空调系统大部分时间在部分负荷下运行,所以,风量的减少带来了风机能耗的降低。VAV系统追求以较少的能耗来满足室内空气环境的要求。VAV系统出现后并没有得到迅速推广,当时美国占主导地位的仍是定风量(CAV,Constant Air Volume)系统加末端再加热和双风道系统。西方70年代爆发的石油危机促使VAV系统在美国得到广泛应用,并在其后20年中不断发展,已经成为美国空调系统的主流,并在其他国家也得到应用。VAV系统有如下优点:a.由于VAV系统通过调节送入房间的风量来适应负荷的变化,同时在确定系统总风量时还可以考虑一定的同时使用情况,所以能够节约风机运行能耗和减少风机装机容量。有关文献介绍,VAV系统与CAV系统相比大约可以节能30%-70%,对不同的建筑物同时使用系数可取0.8左右。b.系统的灵活性较好,易于改、扩建,尤其适用于格局多变的建筑,例如出租写字楼等。当室内参数改变或重新隔断时,可能只需要更换支管和末端装置,移动风口位置,甚至仅仅重新设定一下室内温控器。c.VAV系统属于全空气系统,它具有全空气系统的一些优点,可以利用新风消除室内负荷,没有风机盘管凝水问题和霉菌问题。图1是一个典型的单风道VAV空调系统。在这个系统中,除了送、回风机、末端装置(VAV Terminal)、阀门及风道组成的风路外,还有4个反馈控制环路(室温控制、送风静压控制、送回风量匹配控制及新排风量控制)。在供冷季节中,当某个房间的温度低于设定值时,温控器就会调节VAV末端装置中的风阀开度,减少送入该房间的风量。由于系统阻力增加,送风静压会升高。当超过设定值时,静压控制器通过调节送风机入口导叶角度或电机转速,减少系统的总送风量。送风量的减少导致送回风量差值的减少,送回风量匹配控制器会减少回风量以维持设定值。风道压力的变化将导致新排风量的变化,控制器将调节新风、回风和排风阀来保持新排风量。在冬季,对于有内外区的建筑,内区继续供冷,外区末端装置只提供最小风量以保证新风和气流组织,由末端再热装置或其他采暖系统供热。VAV系统不仅限于图1所示的单风道节流型这一种形式,还有旁通型、双风道等等形式。广义地讲,只要是风量变化的全空气系统都可以称作VAV系统。我国在80年代初曾经引进过VAV系统,但由于对系统性能不够了解,致使系统不能按设计要求运行。一时间VAV系统的应用和研究停顿了下来,近来,工程师们又把目光转向了VAV系统。笔者认为,这其中有两大原因。一是国内目前的CAV系统和风机盘管系统暴露出一些缺点。由于我国目前舒适性空调系统都是没有末端再热的CAV系统,所以,一个送风参数不能满足不同房间的要求。风机盘管系统可以避免这个问题,但是凝水污染吊顶以及霉菌问题同样令人不能容忍。随着室内办公设备的增加、房间使用功能的变化、房间格局的变化,空调系统也应当做相应改动,可是CAV系统和风机盘管系统改扩建较麻烦。第二个原因是受VAV系统节能的诱惑。空调历来是个能耗大户,而其中风机能耗占大半。因此,业主也希望采用VAV系统以节约运行费用。虽然VAV系统有很多优点,但是伴随着VAV系统的诞生,大部分系统或多或少地也暴露出如下问题。从用户的角度看,主要有:1、缺少新风,室内人员感到憋闷;2、房间内正压或负压过大导致室外空气大量渗入,房门开启困难;3、室内噪声偏大。从运行管理方面看,主要有:1、系统运行不稳定,尤其是带“经济循环(Economizer Cycle)”的系统;2、节能效果不明显。此外,目前VAV系统还存在一些固有的缺点:1、系统的初投资比较大;2、对于室内湿负荷变化较大的场合,如果采用室温控制而又没有末端再热装置,往往很难保证室内湿度要求。3、对一个系统来说,问题并不一定时时刻刻都存在,可能在某个工况发生,在另一个工况又消失了。从表面上看,似乎VAV系统只不过比CAV系统多了一些末端装置和风量调节功能。可是,就因为VAV系统风量的变化和增加的末端设备,使得VAV系统从方案设计到设备选择、施工图设计,直到施工和调试都具有不同于定风量系统的特殊性。VAV系统存在的这些问题和缺陷,其原因是多方面的。有的可能需要一定的技术支持才能解决;而有的可能通过空调系统设计人员的努力就可以避免。笔者只是刚开始研究VAV系统,不过在这介绍一些国外的经验教训以及本人的一点心得体会,对读者还是不无裨益的。变风量(VAV)末端装置末端装置是房间送风以维持室内温度的重要设备。末端装置有如下几种分类方法。按照改变风量的方式,有节流型和旁通型。前者采用节流机构(如风阀)调节风量;后者则是通过调节风阀把多余的风量旁通到回风道。按照是否补偿压力变化,有压力有关型(Dressure Dependent)和压力无关型(Pressure Independent)。从控制角度看,前者由温控器直接控制风阀;后者除了温控器外,还有一个风量传感器和一个风量控制器,温控器为主控器,风量控制器为副控器,构成串级控制环路,温控器根据温度偏差设定风量控制器风同归于尽控制器根据风量偏差调节末端装置内风阀。当末端入口压力变化时,通过末端的风量会发生变化,压力无关型末端可以较快地补偿这种压力变化维持原有的风量;而压力有关型末端则要等到风量变化改变了室内温度才动作,在时间上要滞后一些。价格上,压力无关型要比压力有关型高一些。按照有无末端混风机来分,还有带风机和不带风机两种末端。带风机的末端可以在小风量时或低温送风系统中保证室内一定的气流组织。按照风机和一次风的关系,带风机的末端又可分为带并联风机的末端装置(Parallel Fan Powered Terminal)和带串联风机的末端装置(Series Fan Powered Terminal)。按照控制方式分,有电动、气动和自动的。电动的末端还有模拟的和直接数字控制两种。另外,末端装置还可以附设消声和再热功能。是否采用变风量(VAV)设计人员在系统设计时首先面临的问题可能就是采用什么系统形式。某一种系统非常适合这个建筑,可能就不适合那个建筑。VAV系统适合多房间且负荷有一定变化的建筑。对于负荷变化较小的建筑物采用VAV系统的意义可能就不大了。每种系统形式都有它的优点和缺点,不存在十全十美的系统。VAV系统容易产生噪声问题,那么对于影剧院和电台录音棚这类声学效果要求较高的场合,可能最好不要采用VAV系统。对某一系统优劣的评价关键在于实际运行中显现出来的优点多还是缺点多。设计人员在方案设计(概念设计)阶段所做的工作主要是综合各方面因素(建筑物用途、建筑格局、室内负荷变化特点、工程造价、系统运行维护以及业主对将来改扩建的考虑等等),进行技术经济比较,权衡利弊。总之,是否采用VAV系统要因地制宜,不能为了用而用。设计中几个值得注意的问题一、变风量比空调系统全年大部分时间运行在部分负荷工况下,也就是说,VAV系统的风机、风道以及末端的风量大部分时间都处于最大风量和最小风量两种极限状态之间,根据经验,如果在这两种极限状态下不发生问题,那么基本上可以保证系统大部分时间运行正常。最小设计风量与最大设计风量之比定义为变风量比(Kv)。一般地,房间的Kv值最好不要小于0.4-0.5,否则容易导致房间气流组织恶化、噪声和通风问题;系统的Kv值最好也不要小于0.4-0.5,否则会导致系统新风严重不足以及控制不稳定等问题。一般来说,房间的最大设计风量比较容易确定,而对于像会议室、影剧院、餐厅这类负荷变化不确定的地方,确定最小设计风量相对要困难一些。其实,在确定最小风量时除了要考虑负荷变化特点之外,还要考虑房间气流组织和室内空气品质要求。房间送风量太小会产生冷风下沉、新风不足、换气次数不够等问题。为保证风速的测量精度,压力无关型末端装置也有最小风量要求。另外,对于采用灯具回风的房间,一部分灯光负荷没有直接进入房间,而是被回风带走,提高了送回风温差,计算风量时不能包括这部分负荷。所以,在确定设计风量时,还要考虑房间回风方式的影响。不论是房间还是系统,变风量比都是表征VAV系统一个比较重要的动态特性参数。二、新风问题a. 图2是一个典型的CAV系统的经济循环系统(Economizer Cycle System)。在过渡季,通过调节新风、回风和排风3个阀门的开度来改变新风量以维持一个混风温度。这种做法是为了缩短冷机的开启时间。这里姑且不谈经济循环系统在定风量系统中能否正常运行,不过,单纯地像图2那种做法在VAV系统中肯定无法保证新风量。图3给出了一个系统的压力分布图,实线表示设计工况,虚线为50%设计风量时的情况。可以看出,如果不采用任何恒定新风的措施,当总风量减少时,新回风混合点处的压力(指绝对值)就会变小,从而导致新风量减少。对于采用混风的空调系统,不论是CAV系统,还是VAV系统,新风量在各个房间之间是按负荷分配的。也就是说,即使总新风量达到要求,有的房间也会有新风不足的问题。对于VAV系统,由于送入房间的风量是变化的,所以房间的新风量必然也是变化的。所以,VAV系统中,新风主要存在三方面的问题:总新风量的控制、总新风量的确定和新风的分配(新风量的控制问题在本文5中介绍)。b.新风量的确定和分配前面提到,不论是CAV系统,还是VAV系统,新风量在各个房间之间是按负荷分配的。即使总新风量达到要求,有的房间也会有新风不足的问题。如果为了满足这些房间的要求,总新风量将会增加,甚至在有的时候可能超过需要的送风量。为此。ASHRAE标准62-1989提出,在一定的新风量下,总回风中CO2的含量不一定超标,可以利用回风以减少总新风量。该标准给出了修正总新风量的计算式式中Y修正后的总新风量与总送风量之比;X未修正的需求的总新风量与总送 风量之比;Z各房间中,新风量与送风量之比的最大值。ASHRAE标准62-1989只回答了如何确定总新风量问题。可是,对于VAV系统,送入房间的风量是变化的,房间的新风量必然也是变化的。新风的问题就更加突出了。所以,在新风要求很高的场合,可能要单独敷设新风道。这样,风道占用建筑的空间就要增加了。新风问题与建筑物负荷特点、系统形式及室外气象条件等很多因素有关。上述方法或设想,从控制逻辑上可能是可行的,实际当中却未见得适用于任何系统。对于某一特定建筑,很有必要具体分析系统的夏季工况、冬季工况及过渡季经济循环工况。三、 噪声问题在VAV系统中,比较大的噪声源除了送、回(排)风机外,还有VAV末端装置。压力无关型的VAV末端都带有风速测量传感器,这些传感器一般要求风速高于一定数值才能保证测量准确,所以流过末端入口的风速都比较高,这是末端装置产生较高噪声的一个原因。一般的节流型末端是靠调节阀片开度来改变风量的,所以,当阀片关小的时候,流经阀片的风速也增加了,所以,阀门调节也是一个产生噪声的根源。末端装置产生的噪声通过送风和外壳传入室内,前者称为送风噪声(Discharge Noise),后者称为辐射噪声(Radiated Noise)。在末端装置的产品样本中,都列有详细的噪声数据供设计者参考。一般,末端装置产生的噪声随型号增大而增加,随着后压差的增加而增加。由于VAV系统的运行工况是变化的,势必室内的声压级要随之变化。一般来说,人耳对稳定声压级的噪声环境有一定的适应能力,长时间后,人的感觉就不很明显了。但是,当声压级的变化达到5dB,人的耳朵就能较清楚地感觉到。这就是为什么在有的VAV系统中,室内人员有时候能听到噪声,而有时候又感觉不到。对于噪声问题,笔者提出以下几点建议供读者参考:a.校核每个末端装置在最小、最大风量下产生的噪声。b.对于噪声要求较高的场合(如NC35以下),采用VAV系统要谨慎,而带风机的末端通常用在NC40以上的场合。c.因为末端的型号越大噪声也越大,所以,最好选用入口直径不大于300mm的末端装置。d.尽量把末端装置安装在房间外面(如走廊)。如果只能装在室内且噪声又超标,应与建筑工种协调,看是否可以采用消声效果好的吊顶材料或其他措施。e.末端装置出风口到房间送风口间的风道压力损失不要超过60-70Pa。否则,在低负荷工况会导致末端装置前后压差较大,从而使室内噪声级变化较大。f.房间设计噪声声压级最好比要求的低大约5dB。四、气流组织一般的空调系统的送风口都是定截面的,导叶角度也很少改变,所以当风量减少时,势必影响室内气流组织。国外通常采用空气分布特性指标ADPI来评价房间的气流组织性能。该指标综合考虑了空气温度、气流速度和人的舒适度三方面的因素。如果ADPI=100%,表示全室人员都感到舒适;ADPI达到80%,即可认为是满意的气流组织效果。有关的气流组织试验结果表明:在变风量送风的情况下,条缝散流器和灯具散流器在较大的风量变化范围内,ADPI均可保持在80%以上,说明这两种送风口的性能较为理想。所以,在VAV系统中一般不使用普通的方形或圆形散流器,而用是条缝散流器,侧送风口更是极少采用。五、 房间正压度由于VAV系统的新排风量和房间的送回风量是变化的,所以房间的正压也是波动的,不像CAV系统那么稳定。这个问题如果处理不好,会发生房门开启困难、门缝和窗缝渗风严重等问题。房间正压度与系统送回风匹配控制、新排风控制和房间的送回风方式有关。其中,房间的送回风方式是最直接影响房间正压度的因素(关于送回风分匹配控制、新排风控制问题,见5)。VAV系统中,进入房间的送风支风道上都安装有末端装置,而回风道上是很少装末端的,这样,为了保证房间正常压力,国外经常采用吊顶回风,这种做法的回风道内压力的变化对室内压力影响较小。如果只能采用风道回风,就一定要减小回风风风速,尽量减小回风道上相距最远的两个回风口间的压降。六、末端装置的选择前面已经介绍过各种末端装置,而且各个厂家的产品还各具特点。在种类选择时,应充分考虑末端的声学、控制性能以及房间功能要求,在尽寸选择时,一般在设计最大风量的基础上还要考虑一定的裕度以满足将来发展的需要。但是,末端选型不要过大。选型过大会减小风阀的调节范围,降低调节能力,极易导致末端风阀在小风量时产生振荡。另外,在末端选型问题上一直存在一个争论,就是,压力有关型和压力载交型末端哪个好。一种。观点认为,压力无关型末端好,反应快,室温波动小。另一种对立的观点认为,正因为压力无关型末端反应快,才容易造成系统运行不稳定,房间的热惯性较大,一定程度的压力变化对房间温度影响较小。所以,压力有关型反而会比压力无关型更稳定。到底谁优谁劣还需要大量工程实践和研究才能得出结论。不过,由于压力无关型末端比压力有关型末端多了一个风速测量装置(如均速管),所以设计时通常要考虑入口前有中够长的直管道,同时施工和运行管理水平要求也较高(如管道吹灰,更新过滤器)。当然,压力无关型末端的价格也较高。变风量(VAV)系统的控制VAV空调系统的设计和控制系统的设计是密不可分的。前面提到,图1所示的VAV系统当中采用了房间温度控制、送风静压控制、送回风风量匹配控制和新排风风量控制等4个控制环路。直接数字控制DDC虽然不采用环路控制,但是也包含这4部分控制内容,它们是VVA空调控制系统的必要组成部分。当然,系统还会有送风温度控制、预冷预热等其他控制。一、 变风量(VAV)控制系统的组成1 房间温度控制1.1 送风静压控制在VAV系统中,通常根据静压传感器的信号来调节风机送风量,静压控制器通过调节风机转速或入口导叶来恒定静压控制点的静压值,以满足下游风道、末端装置及送风口的压力损失。恒定静压的目的是保证任何一个末端的设计资用压力。那么,就要将静压传感器放在系统最不利的末端入口。由于要恒定静压,送风机不能无限制地减少风量,所以风机功耗并不与风量的3次方成正比。由于存在风道阻力损失,静压传感器越靠近管路末端,静压设定值就越小,就越能节约风机功耗。由于VAV系统的动态特性,实际上不容易定义一个最不利的末端装置。任何一个都可能成为最不利。ASHRAE建议,在使用带定风量装置末端的场合,把静压传感器放在送风机到系统末端的2/3处,笔者认为,这只是个折衷的考虑。不过,对于中小规模的低速送风系统,风道远近压差不太大,所以矛盾不很突出。1.2 新排风风量的控制前面说过,系统风量的调节会导致总新风量的变化,为此,在需要维持新风量不变的场合,有必要采取恒定新风量的措施,下面列举两种:a.将最小新风道和经济循环新风道分开,分设新风阀,并在最小新风道上安装流量传感器,以此来调节3个风阀的开充,维持最小新风量。通常,为保证测量精度,流量传感器前后要保证一定的直管段。但是,由于现场情况比较复杂,经常很难完全满足所要求的直管段。这样,必然对测量和控制效果产生很大影响。据说,现场最好的测量准确度只有20%左右。b.混风压力变化是造成新风量变化的直接原因,所以,恒定新回风混合箱内压力就能够保证新风量。在需要最小新风量的时候,关闭经济循环新风阀,通过调节回风阀来恒定混风压力;在过渡季的时候,由混风温度控制器调节经济循环风阀的开度,随着新风量的增大,混风压力减小,这时,混风压力控制器关小混风阀直至完全关闭,整个系统采用全新风。虽然这种方法原理简单,但实际上很难实现,混风箱内气流很乱,压力极不稳定,压力测点不容易选择。前面提到的两种方法都为是为了恒定新风量。有人认为,对于新风主要用于保证室内空气品质(IAQ),可以采用以室内CO2浓度来控制新风量的办法。这种方法适用于新风品质较差的地区,如夏季空气湿热,冬季干冷。不过,CO2浓度达到要求并不能代表室内空气品质合格,室内还会存在其他易挥发性污染物。关于新、排风的控制,以下几个点值得注意:a.合理选择新风、回风和排风阀,以减少不稳定干扰。b.采用送回风机的系统,回风阀前后压差很大,风阀很难调节。所以有人提出用排风机取代回风机,如图4所示。这样,回风阀前后都是负压,且压差较前者小很多。排风机可由新风、排风流量计或室内压力来控制。c.在新风道阻力较大的场合,可能有必要采用新风机。否则,混风箱内负压过大可能会影响系统稳定。d.另外,室外风压和建筑物的烟囱效应也不容忽视。10m/s的风的滞止压力为65Pa,所以阵风对混风温度和压力的影响是很大的。适当加大新排风道的阻力损失可以增强系统对风压和热压的抵抗能力。1.3送回风风量匹配控制送风量随负荷变化,回风量也要随之变化,这样才能保证房间的正常压力。由于房间向外渗风和厕所排风,回风量要比送风量小。下面是几种目前常用的风量匹配控制方法:a.一种最简单的控制方法是送风机和回风机都由一个送风静压控制器来调节。当负荷减少时,送回风量按同一比例减少,这样送回风量的差值也减少了,从而导致新排风量不平衡。不过,笔者认为,对于变风量比不太小的系统,问题可能不大。b.回风机由放在新回风混合箱里或房间内的静压控制器控制。前面说过,新回风混合箱里气流太乱,不易测量;而房间正压一般很小,容易受干扰。c.在送风和回风风道上安装风量计,并用一个控制器控制二者的差值来解决这个问题。由于现场情况复杂,风量常常无法测准。二、系统控制的稳定性在实际工程中,象图1那样采用多个环路的控制系统,每个环路单独工作都正常,。但是,当4个控制系统都工作时,整个系统就会出现不稳定。例如,当某个房间的温度下降,该房间末端装置的风阀就会关小,从而导致系统静压升高,其他房间的送风量增加。这时,这些房间的末端装置的风阀就会关小以恒定各自的送风量。这将导致系统静压进一步升高。当达到某一限度,静压控制器就降低送风机的转速减小风量,回风机风量也随着减少。系统静压又回落到原来的水平,那么各个末端风阀又开始开大。由于系统压力的变化,必须导致新风量的变化,从而导致新风温度的变化,控制器就会调节3个风阀的开度。由于阀位的变化将致使整个系统的静压和流量发生变化,这时,系统处在一种频繁的调节当中。风阀时而开大时而关小,送进区内的风量也是忽大忽小。很多人认为DDC比反馈控制优越。可是,实际工程当中DDC的也同样遇到了稳定性问题。造成控制系统不稳定的原因是什么呢?如何解决呢?有人认为是多个控制环路之间的相互作用(Interacton),建议设计时不要选用压力无关型末端,而选择压力有关型的末端。这样等于减少了环路数量,可能会提高系统的稳定性。一些系统管理人员干脆拆掉新排风控制,以牺牲新风来换取系统稳定性的提高。还有人认为是末端装置选择过大以及末端入口压力过大。建议合理选择末端,仔细进行风道计算。实际的空调系统千差万别,发生不稳定问题的原因肯定也是多方面的。不过,笔者认为,单就系统控制而言,除了VAV系统本身的强动态特性,空调系统的非线性和线性化控制以及过高的控制要求可能是造成系统不稳定的两个重要原因。为了全面提高系统稳定性、最大限度地节约能量,出现了一个新概念,就是所谓的基于末端装置的变风量系统(TRAV, Terminal Regulated Air Volume System)。其基本原理是,将末端装置送风温度、温控器读数、风量及阀位信号都送入一个中央控制器,由它来统一计算后再调节送风状态点(送风机工况点以及表冷器后送风温湿度)和各个末端装置的阀位。这种控制方法是以损失房间的单独调节功能及个别房间的利益来求取系统的稳定,对于一般的舒适性空调倒不失为一种较可行的方法。不过,这种控制方法的控制算法有待继续研究。VAV系统能否正常运行在很大程度上要依靠控制系统,然而目前的控制手段还很不成熟。实际工程中确实有相当一部分系统不能按照原先设计的那样运行。不过,将空调系统设计和控制系统设计两部分融合起来,同时考虑,针对不同的系统设计切实可行的控制策略,还是可以设计出成功的VAV系统的。那种由建筑设备设计人员先设计空调部分,再由控制工程人员或公司承包控制部分的做法似乎是行不通的。总结VAV系统设计比CAV系统容易还是难呢?有这样一种认识:既然VAV系统的工况是不断变化的,不知道风道里气流的压力、流量具体是怎么变化的,所以无法、也没有必要仔细计算和设计风道。况且压力无关型VAV末端又能够自行补偿上游气流压力的变化,末端装置的尺寸选择过大、风道大了小了都不会出问题。不用仔细做风道计算和设备选择,设计当然简单了。可实际并非如此。正是由于VAV系统工况随时变化,原先CAV系统设计那种以设计日为基础的方法似乎在此行不通,需要引入动态分析设计的思想和方法。不仅需要考虑设计日情况,还要分析过渡季的工况,既要计算最大负荷,又要计算最小负荷,甚至必须进行全年分析。否则,系统将来可能会产生大问题,例如前面提到的新风不足和噪声偏大。CAV系统设计同样需要考虑新风、噪声和全年运行调节等问题。但是相对而言,VAV系统分析计算的工作量和难度要大得多。从这外意义上说,VAV系统的设计向设计人员和原有的设计思想、设计方法提出了挑战。VAV系统虽然已经发展了30年,但是技术还不很成熟,还存在不少问题亟解决。本文的一些建议和观点只是笔者的管窥之见,仅供参考。VAV系统有很强的动态特性,加之空调系统固有的非线性,使问题的解决变得非常困难。头痛医头、脚痛医脚的做法,菜谱式的静态分析和设计的方法可能不会从根本上解决问题。设计人员要想使系统运行中少出或不出问题,就需要对VAV系统的特性有足够的认识,并能够做出较准确的定量分析。可目前这方面的研究还比较滞后,设计人员在设计时缺少有效的分析计算手段。国内VAV系统的实践正在兴起,迫切需要可行的、有效的辅助设计的分析方法。参考文献Chen, Steve, Stanley Damster. Variable Air Volume System for Environmental Quality. Megraw-Hill Company, 1996电子工业部第十设计院. 空气调节设计手册(第二版). 北京:中国建筑工业出版社,1995Haines,Roger.Ventilation Air, the Economizer Cycle, and VAV. Heating/Piping/Air Conditioning, October 1994.Wendes, Herb. Supply outlets for VAV Systems. Heating/Piping/Air Conditioning, February 1989ASHRAE Handbook. HVAC Systems and Equipment. 1996Haines, Roger. Outside Air Volume Control in a VAV System. Heating/Piping/Air Conditioning, October 1986Graves, Larry. VAV Mixed Air Plenum Pressure Control. Heating/Piping/Air Conditioning, August 1985Avery, Gil. VAV Economizer Cycle: Dont Use a Return Fan. Heating/Piping/Air Conditioning, August 1985Haines, Roger. Control Strategies for VAV Systems. Heating/Piping/Air Conditioning, Setem
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼教机构家长委员会职责及发展规划
- 文物保护单位资产清查领导小组成员及职责
- 幼儿园园长家校合作职责解析
- 大型舞台脚手架安全隐患及防范措施
- 航空产品售后服务体系及措施
- 通信网络监理岗位职责
- 物流仓储工程BIM实施措施
- 2025年儿科急救技能培训考试答案及解析
- 2025年救护学院急救措施与抢救技能考核题答案及解析
- 电力工程施工扬尘控制措施
- 渝22TS02 市政排水管道附属设施标准图集 DJBT50-159
- 学生全面发展
- 水库维修申请报告
- 城市管理网格员理论知识考核要素细目表
- 2《宁夏闽宁镇昔日干沙滩今日金沙滩》公开课一等奖创新教案+(共40张)+随堂练习(含答案)
- 支原体感染详细讲解
- 《导游业务》课程标准
- 山东省青岛市城阳区2024-2025学年下学期期中考试七年级数学试题(含部分答案)
- 呼吸道吸入剂应用科普
- 2025年高考真题-化学(河南卷) 含答案
- 2025至2030年中国紫外线LED行业发展现状及发展趋势预测报告
评论
0/150
提交评论