矩阵及其运算习题课ppt课件.ppt_第1页
矩阵及其运算习题课ppt课件.ppt_第2页
矩阵及其运算习题课ppt课件.ppt_第3页
矩阵及其运算习题课ppt课件.ppt_第4页
矩阵及其运算习题课ppt课件.ppt_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 矩阵的定义 由m n个数aij i 1 2 m j 1 2 n 排成的m行n列的数表 称为m行n列的矩阵 简称m n矩阵 简记为 这m n个数aij称为矩阵A的元素 A Am n aij m n aij 元素是实数的矩阵称为实矩阵 元素是复数的矩阵称为复矩阵 一 基本概念 2 特殊矩阵 1 行数与列数都等于n的矩阵A 称为n阶方阵 也可记作An 或对角阵 其中 1 2 n不全为零 记作ding 1 2 n 3 如果En diag 1 2 n diag 1 1 1 则称En为 n阶 单位矩阵 或简称单位阵 简记为E 4 元素全为零的矩阵称为零矩阵 m n阶零矩阵记作Om n或O 5 只有一行 列 的矩阵称为行 列 矩阵 或行 列 向量 2 两个矩阵A aij 与B bij 为同型矩阵 并且对应元素相等 即aij bij i 1 2 m j 1 2 n 则称矩阵A与B相等 记作A B 1 两个矩阵的行 列数对应相等 称为同型矩阵 3 同型矩阵和相等矩阵 4 矩阵的加法 设有两个同型的m n矩阵A aij 与B bij 那末矩阵A与B的和定义为 aij bij 记作A B 即 矩阵加法的运算规律 1 交换律 A B B A 2 结合律 A B C A B C 矩阵A aij 称 A aij 为矩阵A的负矩阵 A A O A B A B 5 数与矩阵相乘 数 与矩阵A aij 的乘积定义为 aij 记作 A或A 简称为数乘 设A B为同型的m n矩阵 为数 1 A A 2 A A A 3 A B A B 数乘矩阵的运算规律 矩阵的加法与数乘运算 统称为矩阵的线性运算 设A aij 是一个m s矩阵 B bij 是一个s n矩阵 定义矩阵A与矩阵B的乘积C cij 是一个m n矩阵 其中 6 矩阵与矩阵相乘 i 1 2 m j 1 2 n 并把此乘积记作C AB 矩阵乘法的运算规律 1 结合律 AB C A BC 2 分配律 A B C AB AC B C A BA CA 3 AB A B A B 其中 为数 4 Am nEn EmAm n A 把矩阵A的行列互换 所得到的新矩阵 叫做矩阵A的转置矩阵 记作AT 7 转置矩阵 1 AT T A 2 A B T AT BT 3 A T AT 4 AB T BTAT 转置矩阵的运算性质 8 方阵的运算 方阵的幂满足幂运算律 AkAm Ak m Am k Amk 其中k m为正整数 若A是n阶方阵 则Ak为A的k次幂 定义为A1 A Ak 1 AkA1 k为正整数 由n阶方阵A的元素所构成的行列式叫做方阵A的行列式 记作 A 或detA 方阵行列式的运算性质 1 AT A 2 A n A 3 AB A B B A BA 9 一些特殊的矩阵 设A为n阶方阵 1 如果AT A 称A为对称矩阵 2 如果AT A 称A为反对称矩阵 3 如果AAT ATA E 称A为正交矩阵 6 主对角线以下 上 的元素都为零的方阵称为上 下 三角矩阵 7 行列式 A 的各个元素的代数余子式Aij所构成的如下矩阵 称为矩阵A的伴随矩阵 性质 AA A A A E 对于n阶方阵A 如果存在一个n阶方阵B 使得AB BA E则称矩阵A是可逆的 非奇异的 非退化的 并称矩阵B为A的逆矩阵 A的逆矩阵记作A 1 10 逆矩阵 2 矩阵A可逆的充要条件是 A 0 3 若A是可逆矩阵 则 4 若AB E 或BA E 则B A 1 1 若A是可逆矩阵 则A的逆矩阵是唯一的 5 若矩阵A可逆 且 0 则 A亦可逆 且 7 若矩阵A可逆 则AT亦可逆 且 AT 1 A 1 T 6 若A B为同阶可逆方阵 则AB亦可逆 且 AB 1 B 1A 1 8 若矩阵A可逆 则有 A 1 A 1 逆矩阵的计算方法 3 初等变换法 下一章介绍 2 伴随矩阵法 1 待定系数法 矩阵的分块 主要目的在于简化运算及便于论证 分块矩阵的运算规则与矩阵的运算规则相类似 11 分块矩阵 矩阵的分块 主要目的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论