




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1题图反比例函数面积问题(二)一选择题1如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上若点A的坐标为(2,2),则k的值为()A1 B3 C4 D1或32题图2.(2014抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x0)上的一个动点,PBy轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A逐渐增大 B不变3题图C逐渐减小 D先增大后减小3(2013江干区一模)如图,点P是反比例函数的图象上的任意一点,过点P分别作两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是矩形OAPB内任意一点,连接DA、DB、DP、DO,则图中阴影部分的面积是()A1 B2 C3 D44如图,A、B是反比例函数y=上两点,ACy轴于C,BDx轴于D,AC=BD=OC,S四边形ABDC=14,则k=_5.如图,直线y=x2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为1,点D在反比例函数y=的图象上,CD平行于y轴,SOCD=,则k的值为_6.如图,点P1(x1,y1),点P2(x2,y2),点Pn(xn,yn)都在函数(x0)的图象上,P1OA1,P2A1A2,P3A2A3,PnAn1An都是等腰直角三角形,斜边OA1,A1A2,A2A3,An1An都在x轴上(n是大于或等于2的正整数),已知点A1的坐标为(2,0),则点P1的坐标为_;点P2的坐标为_;点Pn的坐标为_(用含n的式子表示)7(2014营口)如图,在平面直角坐标系中,ABC的边ABx轴,点A在双曲线y=(x0)上,点B在双曲线y=(x0)上,边AC中点D在x轴上,ABC的面积为8,则k=_8(2014荆州)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边ABC,点C在第四象限随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k0)上运动,则k的值是_9如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S5的值为_10.如图,设点P是函数y=在第一象限图象上的任意一点,点P关于原点O的对称点为P,过点P作直线PA平行于y轴,过点P作直线PA平行于x轴,PA与PA相交于点A,则PAP的面积为_11.如图,已知A,B两点是反比例函数y=(x0)的图象上任意两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,连接AB,AO,BO,梯形ABDC的面积为5,则AOB的面积为_12.如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k=_13.如图,点A为反比例函数y=的图象上一点,B点在x轴上且OA=BA,则AOB的面积为_14如图,一次函数 y=kx+b 的图象与反比例函数 的图象交于 A(2,1),B(1,n) 两点()试确定上述反比例函数和一次函数的表达式;()连OB,在x轴上取点C,使BC=BO,并求OBC的面积;()直接写出一次函数值大于反比例函数值的自变量x的取值范围15如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(3,n)两点(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b的解集;(3)过点B作BCx轴,垂足为C,求SABC16如图,一次函数y=kx+b与反比例函数的图象相交于A,B两点,且与坐标轴的交点为(6,0),(0,6),点B的横坐标为4,(1)试确定反比例函数的解析式;(2)求AOB的面积;(3)直接写出不等式的解17如图,反比例函数(x0)与一次函数y2=kx+m的图象相交于A、B两点已知A、B两点的横坐标分别为1和4(1)直接写出使y2y1的x的取值范围_;(2)求反比例函数与一次函数的关系式;(3)求AOB的面积18已知双曲线y=和直线AB的图象交于点A(3,4),ACx轴于点C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮人才短缺问题与2025年培养机制创新实践分析报告
- 电脑拆装课程活动方案
- 美术父亲节活动方案
- 福州寺庙腊八节活动方案
- 美容清明活动方案
- 福娃自助活动方案
- 童装礼服馆活动方案
- 端午高校活动方案
- 硬件部门活动方案
- 线下征婚活动方案
- 九一八警钟长鸣强国有我+课件-2025-2026学年高一上学期爱国主义主题班会教育+-
- 反洗钱可疑交易识别课件
- 人教部编版小学三年级语文上册课后习题参考答案
- 光伏运维安全培训总结课件
- 2025年第九届全国中小学“学宪法、讲宪法”活动知识竞赛题库及答案
- 土石方运输居间合同范本土石方运输居间合同格式-仅供参考8篇
- 2025-2026学年人教版(PEP)三年级上册英语教学计划(三篇)
- 室外消火栓埋地施工方案
- 山东省汽车维修工时定额(T-SDAMTIA 0001-2023)
- 体育原理课件
- 豆制品创新集聚产业园生产、加工、销售建设项目建议书写作模板-定制
评论
0/150
提交评论