因式分解复习 (2).doc_第1页
因式分解复习 (2).doc_第2页
因式分解复习 (2).doc_第3页
因式分解复习 (2).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

、复习目标:知识能力目标:1、理解整式乘法与因式分解的关系,会用整式乘法来检验因式分解的正确性。2、了解因式分解的四种形式。3、熟练运用提公因式法和公式法对多项式因式分解。情感态度价值观:阳光展示,激情参与。复习重点:提公因式法和运用公式法。复习难点:十字相乘法和分组分解法。教学活动知识梳理知识点1 因式分解的定义 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式. 【说明】 (1)因式分解与整式乘法是相反方向的变形,即互逆的运算. 例如: (2)因式分解是恒等变形,因此可以用整式乘法来检验. 知识点2 提公因式法 多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式.ma+mb+m(a+b+a+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+a+mb+m所得的商,像这种分解因式的方法叫做提公因式法. 例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1). 知识点3 公式法 (1)平方差公式:a2-b2=(a+b)(a-b). 即两个数的平方差,等于这两个数的和与这个数的差的积. 例如:4x2-9=(2x)2-32=(2x+3)(2x-3).(2)完全平方公式 注意:是关于某个字母(或式子)的二次三项式; 其首尾两项是两个符号相同的平方形式; 中间项恰是这两数乘积的2倍(或乘积2倍的相反数);使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成 a22ab+b2公式原型,弄清 、 分别a、b表示的量.知识点4 十字相乘法 口决:“拆两头,凑中间”知识点5 分组分解法: 分组的原则:分组后要能使因式分解继续下去1、分组后可以提公因式 2、分组后可以运用公式 四项:常考虑一三分组或者是二二分组 五项:常考虑二三分组2.解题技巧可归纳为一“提”、二“套”、三“分”、四“查”:(1)一“提”:先看多项式的各项是否有公因式,若有必须先提出来.(2)二“套”:若多项式的各项无公因式(或已提出公因式),第二步则看能不能用公式法或十字相乘法分解.(3)“三分”:若以上两步都不行,则应考虑分组分解法,将能用上述方法进行分解的项分成一组,使之分组后能“提”或能“套”,当然要注意其要分解到底才能结束.(4)四“查”:可以用整式乘法检查因式分解的结果是否正确.3、典型例题及针对练习(1)分解因式:3x2-3(2)X2+2xy+y2-4(3)分解因式:a2-4a+4(4)分解因式:3x218x27(5)分解因式:ax24a(6)分解因式:x225(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论