


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2圆心角、圆周角2.2.1圆心角知|识|目|标1通过观察车轮、钟表等图案,理解圆心角的概念2通过回顾圆的旋转不变性,理解圆心角、弧、弦之间的关系目标一理解圆心角的概念例1 教材补充例题已知O的半径为5 cm,弦AB的长为5 cm,则弦AB所对的圆心角AOB_【归纳总结】1理解圆心角概念的两个关键点:角的顶点在圆心;角的两边与圆相交图2212圆心角所对的弧:如图221,在O中,圆心角AOB所对的弧为劣弧.拓展:把一个圆周分成360等份,每一份的圆心角为周角的,即每一份的圆心角为1,这个圆心角所对的弧也为1,容易得到:n的圆心角对着n的弧,因此圆心角的度数等于它所对弧的度数目标二理解圆心角、弧、弦之间的关系例2 教材补充例题如图222,O为等腰三角形ABC的底边AB上的中点,以点O为圆心,AB为直径的半圆分别交AC,BC于点D,E.求证:图222(1)AOEBOD;(2).【归纳总结】圆心角、弧、弦之间的关系“知一推二”:在同圆或等圆中,两个圆心角、两条弧、两条弦这三组量中有一组量相等,其余的各组量也相等,简称“知一推二”特别提醒:圆心角、弧、弦之间的关系成立的条件是在同圆或等圆中,没有这一前提条件,结论不一定成立知识点一圆心角的概念顶点在_,角的两边与圆相交的角叫作圆心角知识点二弧、弦、圆心角的关系定理:在同圆中,如果圆心角相等,那么它们所对的_相等,所对的_也相等推论 在同圆或等圆中,如果两个圆心角、两条弧和两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等如图223中,若下列三个等式AOBCOD,ABCD,中有一个等式成立,则其他两个等式也成立如图223,AB,CD是O的两条弦,图223(1)如果AOBCOD,那么,ABCD;(2)如果ABCD,那么AOBCOD,;(3)如果,那么ABCD,AOBCOD.如图224,在O中,若2,试判断AB与2CD之间的大小关系,并说明理由图224解:在同圆或等圆中,相等的弧所对的弦相等,当2时,AB2CD.以上解答是否正确?若不正确,请改正教师详解详析【目标突破】例160例2解:(1)CACB,AB.OAOD,OBOE,AODA,BOEB,AODBOE,AODDOEBOEDOE,即AOEBOD.(2)由(1)知AODBOE,.【总结反思】小结 知识点一圆心知识点二弧弦反思 不正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年断路器关键部件项目发展计划
- 基于故障信息和时空邻域的工业过程监测方法研究
- MRS联合DTI预测TIPS术后新发肝性脑病的初步研究
- 垂直领域大语言模型相关技术研究与应用
- 道路货运业务员安全知识竞赛强化考核试卷含答案
- 碳化硅蜂窝陶瓷载体的制备及性能
- 安孚科技跨界并购南孚电池的动因及绩效研究
- 桑叶活性肽的超声辅助酶解制备工艺优化与蛋白结构的相关性研究
- 2025年袋装腹膜透析液合作协议书
- 2024-2025学年新教材高中物理 第4章 电磁振荡与电磁波 2 电磁场与电磁波说课稿 新人教版选择性必修第二册
- 《基层常见病诊疗指南》
- 安徽省农村信用社联合社2026年校园招聘备考考试题库附答案解析
- 肺结节培训课件
- 集中供电空调客车的应急电源
- LY/T 2663-2016森林防火地理信息系统技术要求
- GB/T 5018-2008润滑脂防腐蚀性试验法
- 爆破片安全装置定期检查、使用、维护、更换记录表
- 筑梦航天知识题库
- 质量问题分析改进报告模板
- 抽水蓄能电站建设工程作业指导书编制导则资料
- DB13(J)∕T 105-2017 预应力混凝土管桩基础技术规程
评论
0/150
提交评论