1.3.1单调与最值(3).doc_第1页
1.3.1单调与最值(3).doc_第2页
1.3.1单调与最值(3).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.3.1 单调性与最值(3)教学目标: 1.使学生理解函数最大(小)值及其几何意义;2.使学生掌握函数最值与函数单调性的关系;3.使学生掌握一些单调函数在给定区间上的最值的求法;4.培养学生数形结合、辩证思维的能力;5.养成细心观察、认真分析、严谨论证的良好思维习惯。教学重点:函数最值的含义教学难点:单调函数最值的求法教学方法:讲授法1函数最大值与最小值的含义定义:一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得。那么,我们称是函数的最大值(maximum value).几何意义:函数的最大值是图象最高点的纵坐标。思考:你能仿照函数最大值的定义,给出函数的最小值(minimum value)吗?并说明几何意义?一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得。那么,我们称是函数的最小值(minimum value).几何意义:函数的最大值是图象最低点的纵坐标。2最值的求法配凑法:研究二次函数的最大(小)值,若给定区间是,先配方成后,当时,函数取最小值为;当时,函数取最大值。若给定区间是,则必须先判断函数在这个区间上的单调性,然后再求最值(见下列例题)。(此处顺带说出求值域的方法配方法)单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.数形结合法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值.3例题分析(讲解最值求解方法时带出值域)例1教材第30页例题3。例21、求函数在下列各区间上的最值:(1) (2)1,4 (3) (4) (5) 2、求函数的最大值.解:配方为,由,得.例3求函数在区间2,6上的最大值和最小值(教材第31页例4)。分析:先判定函数在区间2,6上的单调性,然后再求最大值和最小值。变式:若区间为呢?例4. 求下列函数的最大值和最小值:(1); (2).解:(1)二次函数的对称轴为,即.画出函数的图象,由图可知,当时,; 当时,. 所以函数的最大值为4,最小值为.(2).作出函数的图象,由图可知,. 所以函数的最大值为3, 最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.直接观察得到。随堂巩固:1、指出下列函数图象的最高点或最低点, 能体现函数值有什么特征?,;,2、函数在区间2,4上的最大值,最小值是( )A1、 B. 、1 C. 、 D. 、3函数的最大值 4若,那么的最小值 5、函数的最大值是 能力提升1已知函数,求函数的最大值和最小值。2已知函数(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论