


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:充分条件与必要条件(第二课时)(教案)一. 教学目标:1.使学生初步掌握充要条件2.培养学生理解、分析、归纳、解决问题的能力二. 教学重点:关于充要条件的判断教学难点:关于充要条件的判断三. 教学过程(一)复习提问 1.什么叫充分条件?什么叫必要条件?说出“”的含义 2.指出下列各组命题中,“pq”及“qp”是否成立 (1)p:内错角相等 q:两直线平行 (2)p:三角形三边相等 q:三角形三个角相等(二)授新课1.(通过复习提问直接引入课题)充要条件定义:一般地,如果既有pq,又有qp,就记作:pq。 这时,p既是q的充分条件,又是q的必要条件,我们说p是q的充分必要条件,简称充要条件 点明思路:判断p是q的什么条件,不仅要考查pq是否成立,即若p则q形式命题是否正确,还得考察qp是否成立,即若q则p形式命题是否正确。 2.辨析题:(学生讨论并解答,教师引导并归纳)思考:下列各组命题中,p是q的什么条件:1) p: x是6的倍数。 q:x是2的倍数2) p: x是2的倍数。 q:x是6的倍数3) p: x是2的倍数,也是3的倍数。q:x是6的倍数4) p: x是4的倍数 q:x是6的倍数总结:1) pq 且q p 则 p是q的充分而不必要条件2) qp 且pq 则p 是q 的必要而不充分条件3) pq 且qp 则q 是p的充要条件4) pq 且qp则 p是 q的既不充分也不必要条件强调:判断p是q的什么条件,不仅要考虑pq是否成立,同时还要考虑qp是否成立。且p是q的什么条件,以上四种情况必具其一.3 巩固强化例一:指出下列各命题中,p是q的什么条件:1) p:x1 q:x22) p:x5 q:x-13) p:(x-2)(x-3)=0 q:x-2=04) p:x=3 q:=95) p:x=1 q:x-1=0解:1) x1 x2 但x2x1 p是q的必要而不充分条件2) x5x-1 但x-1 x5 p是q的充分而不必要条件3) (x-2)(x-3)=0 x-2=0但 x-2=0(x-2)(x-3)=0p是q的必要而不充分条件4) x=3x=9 但x=9 x=3 p是q的充分而不必要条件5) x= 1x-1=0 且x=1x=1 p是q的充要条件通过例一引导同学观察归纳:当p、q分别从集A、B合出现时若AB但B不包含于A,即A 是B的真子集,则p是q的充分而不必要条件若AB 但A不包含于B, 即B是A的真子集,则p是q的必要而不充分条件若AB且BA 即A=B 则p是q的充要条件若A不包含于B,且B不包含于A,则p是q的既不充分也不必要条件总结判断p是q的什么条件:方法1:考察pq 及qp 是否成立。即:判断若p则q形式命题及若q则p形式命题真假. 方法2:集合观点4拓展联系:1) 请举例说明:p是q的充分而不必要条件p是q的必要而不充分条件p是q的既不充分也不必要条件p是q的充要条件2) 从 “充分而不必要条件” “必要而不充分条件” “充要条件” “既不充分也不必要条件”中选出适当一种填空: “aN”是“aZ”的 “a0”是“ab0”的 “x=3x+4”是“x=”的 “四边相等”是“四边形是正方形”的3) 判断下列命题的真假: “ab”是“ab”的充分条件“ab”是“ab”的必要条件“ab”是“a+cb+c”的充要条件“ab”是“acbc”的充分条件(点题:举反例在说明pq或qp时应用)5巩固提高:(学生讨论,师生共同完成)1) 若甲是乙的充分而不必要条件,丙是乙的充要条件,丁是丙的必要而不充分条件,问丁是甲的什么条件?2) 求证:关于X的方程ax+bx+c=0(a0)有两个符号相反且不为零的实根充要条件是ac0)且p是q的必要而不充分条件,求实数m的取值范围(点题:依据:若p则q命题与其逆否命题若q则p同真假,由qp且pq,知pq且qp)6 小结 (学生回顾所学内容并小结,教师补充完善)1) 充要条件:若pq 且qp则p是q的充要条件2) 判断p是q 的什么条件,不仅要考察pq是否成立,还要考察qp是否成立3) 判断pq是否成立,思路1: 判断若p则q形式命题真假 思路2: 若p则q形式命题真假难判断时 判断其逆否命题真假思路3: 集合的观点7 作业 补充练习:1 已知p是r的充分条件 ,r是q的必要条件, 同时r是s的充分条件, q是s的必要条件 ,那么:1) s是p的什么条件?2) p
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生态农业科技园合作开发与运营管理协议
- 2025年智能立体停车场租赁合同安全管理与智慧运营服务协议
- 2025年金融领域实习生岗位聘用合同模板
- 2025年度韵达快递员工薪酬福利体系优化合同
- 2025高端购物中心室内设计施工一体化合同范本
- 2025年度高端艺术品交易财产保全与鉴定评估合同
- 2025年大型集团财务数据处理与安全保障合同
- 2025年大型连锁酒店品牌管理运营授权合同范本
- 2025年高端医疗影像设备租赁及一体化销售合作协议
- 2025年跨行业并购重组专项顾问服务合同
- 轴承装配组装SOP
- 过敏性休克完整版本
- DL∕ T 5100-1999 水工混凝土外加剂技术规程
- 合同未签订提前供货函模板
- 小学必背古诗词182首(带目录及释义)人教(部编版)
- 2024年东南亚一体式直流充电桩市场深度研究及预测报告
- DZ∕T 0213-2020 矿产地质勘查规范 石灰岩、水泥配料类(正式版)
- 学校食堂食材采购询价方案范文(35篇)
- 2023年广西现代物流集团社会招聘、校园招聘考试真题及答案
- 保险公司案件风险排查工作报告
- 《化妆品技术》课件-化妆品的历史起源与发展
评论
0/150
提交评论