




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二课时直线与椭圆的位置关系导入新知1直线与椭圆的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个公共点(2)从代数角度看,可通过将表示直线的方程代入椭圆的方程消元后所得一元二次方程解的情况来判断设直线l的方程为AxByC0,椭圆方程为f(x,y)0.由消元,如消去y后得ax2bxc0.设b24ac.0时,直线和椭圆相交于不同两点;0时,直线和椭圆相切于一点;0时,直线和椭圆没有公共点2椭圆的弦直线与椭圆相交有两个交点时,这条直线上以这两个交点为端点的线段叫做椭圆的弦,线段的长就是弦长,简单地说,椭圆的弦就是连接椭圆上任意两点所得的线段化解疑难1直线与椭圆有三种位置关系,即相交、相切和相离2解决直线与椭圆的位置关系,一般是联立直线方程和椭圆方程组成方程组,根据方程组解的个数判断直线与椭圆的公共点的个数,从而确定位置关系直线与椭圆的位置关系例1对不同的实数值m,讨论直线yxm与椭圆y21的位置关系解由消去y,得(xm)21,整理得5x28mx4m240.(8m)245(4m24)16(5m2)当m时,0,直线与椭圆相交;当m或m时,0,直线与椭圆相切;当m或m时,0,直线与椭圆相离类题通法判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则0直线与椭圆相交;0直线与椭圆相切;0直线与椭圆相离活学活用若直线ykx1与焦点在x轴上的椭圆1总有公共点,求m的取值范围解:由消去y,得(m5k2)x210kx5(1m)0,100k220(m5k2)(1m)20m(5k2m1)直线与椭圆总有公共点,0对任意kR都成立m0,5k21m恒成立5k20,1m0,即m1.又椭圆的焦点在x轴上,0m5,1m5,弦长问题例2已知斜率为2的直线经过椭圆1的右焦点F1,与椭圆相交于A,B两点,求弦AB的长解法一:直线l过椭圆1的右焦点F1(1,0),且直线的斜率为2,直线l的方程为y2(x1),即2xy20.由方程组得交点A(0,2),B.|AB| .法二:设A(x1,y1),B(x2,y2),则A,B的坐标为方程组的解消去y得,3x25x0,则x1x2,x1x20.|AB| .类题通法当直线与椭圆相交时,两交点间的距离,称为弦长(1)求弦长的方法:将直线方程与椭圆方程联立,得到关于x的一元二次方程,然后运用根与系数的关系求弦长不必具体求出方程的根,即不必求出直线与椭圆的交点这种方法是求弦长常采用的方法(2)求弦长的公式:设直线l的斜率为k,方程为ykxb,设端点A(x1,y1),B(x2,y2)则|AB|,其中,x1x2,x1x2的值,可通过由直线方程与椭圆方程联立消去y后得到关于x的一元二次方程得到活学活用椭圆1(ab0)的离心率为,且椭圆与直线x2y80相交于P,Q,且|PQ|,求椭圆的方程解:e,b2a2.椭圆的方程为x24y2a2.与x2y80联立消去y,得2x216x64a20,由0,得a232,由弦长公式得10642(64a2)a236,b29.椭圆的方程为1.中点弦问题例3已知点P(4,2)是直线l被椭圆1所截得的线段的中点,求直线l的方程解法一:由题意可设直线l的方程为y2k(x4),而椭圆的方程可以化为x24y2360.将直线方程代入椭圆的方程有(4k21)x28k(4k2)x4(4k2)2360.x1x28,k.直线l的方程为y2(x4),即x2y80.法二:设直线l与椭圆的交点为A(x1,y1),B(x2,y2),两式相减,有(x1x2)(x1x2)4(y1y2)(y1y2)0.又x1x28,y1y24,即k.直线l的方程为x2y80.类题通法解决椭圆中点弦问题的两种方法(1)根与系数的关系法:联立直线方程和椭圆方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;(2)点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A(x1,y1),B(x2,y2)是椭圆1(ab0)上的两个不同的点,M(x0,y0)是线段AB的中点,则由,得(xx)(yy)0,变形得,即kAB.活学活用已知中心在原点,一个焦点为F(0,)的椭圆被直线l:y3x2截得的弦的中点横坐标为,求此椭圆的方程解:设所求椭圆的方程为1(ab0)弦两端点为(x1,y1),(x2,y2),由1及y3x2得(a29b2)x212b2xb2(4a2)0,x1x2,由已知,即1,所以a23b2.又c2a2b250,所以得a275,b225,所以椭圆的方程为1.典例(12分)(北京高考)已知椭圆C:1(ab0)的一个顶点为A(2,0),离心率为.直线yk(x1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当AMN的面积为时,求k的值 解题流程活学活用(浙江高考)如图,设椭圆y21(a1)(1)求直线ykx1被椭圆截得的线段长(用a,k表示);(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围解:(1)设直线ykx1被椭圆截得的线段为AP,由得(1a2k2)x22a2kx0,故x10,x2.因此|AP|x1x2|.(2)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|AQ|.记直线AP,AQ的斜率分别为k1,k2,且k1,k20,k1k2.由(1)知,|AP|,|AQ|,故,所以(kk)1kka2(2a2)kk0.由k1k2,k1,k20得1kka2(2a2)kk0,因此1a2(a22)因为式关于k1,k2的方程有解的充要条件是1a2(a22)1,所以a.因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1a.由e,得0e.所求离心率的取值范围为.随堂即时演练1已知椭圆E:1(ab0)的右焦点为F,短轴的一个端点为M,直线l:3x4y0交椭圆E于A,B两点若|AF|BF|4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是()A.B.C. D.解析:选A根据椭圆的对称性及椭圆的定义可得A,B两点到椭圆左、右焦点的距离和为4a2(|AF|BF|)8,所以a2.又d,所以1b2,所以e .因为1b2,所以0e.2直线yx1被椭圆1所截得的弦的中点坐标是()A. B.C. D.解析:选C设A(x1,y1),B(x2,y2)为直线与椭圆的交点,中点M(x0,y0),由得3x24x20.x0,y0x01,中点坐标为.3已知焦点在x轴上的椭圆C:y21(a0),过右焦点作垂直于x轴的直线交椭圆于A,B两点,且|AB|1,则该椭圆的离心率为_解析:因为椭圆y21(a0)的焦点在x轴上,所以c,又过右焦点且垂直于x轴的直线为xc,将其代入椭圆方程中,得y21,则y ,又|AB|1,所以21,得,所以该椭圆的离心率e(负值舍去)答案:4直线yx2与椭圆1有两个公共点,则m的取值范围是_解析:由得(m3)x24mxm0.又直线与椭圆有两个公共点,(4m)24m(m3)16m24m212m12m212m0,解得m1或m0.又m0且m3,m1且m3.答案:(1,3)(3,)5过点P(1,1)的直线与椭圆1交于A,B两点,若线段AB的中点恰为点P,求AB所在的直线方程及弦长|AB|.解:设A(x1,y1),B(x2,y2),由A,B两点在椭圆上得两式相减得(x1x2)(x1x2)2(y1y2)(y1y2)0.显然x1x2,故由得kAB.因为点P是AB的中点,所以有x1x22,y1y22.把代入得kAB,故AB的直线方程是y1(x1),即x2y30.由消去y得3x26x10.x1x22,x1x2,|AB| .课时达标检测一、选择题1椭圆1的两个焦点为F1,F2,过F2的直线交椭圆于A,B两点若|AB|8,则|AF1|BF1|的值为()A10B12C16 D18解析:选B|AB|AF1|BF1|4a,|AF1|BF1|45812.2椭圆x2my21的焦点在y轴上,且长轴长是短轴长的2倍,则m()A. B.C2 D4解析:选A将椭圆方程化为标准方程为x21.焦点在y轴上,1,0m1.由方程得a ,b1.a2b,m.3两个正数1,9的等差中项是a,等比中项是b且b0,则曲线1的离心率为()A. B.C. D.解析:选Aa5,b3,e.4已知F1,F2是椭圆的两个焦点,满足0的点M总在椭圆内部,则椭圆离心率的取值范围是()A(0,1) B0,C0, D.,1解析:选C,点M在以F1F2为直径的圆上又点M在椭圆内部,cb,c2b2a2c2,即2c2a2,即.又e0,0e.5已知椭圆C:y21的右焦点为F,直线l:x2,点Al,线段AF交椭圆C于点B,若3,则| |()A. B2C. D3解析:选A设点A(2,n),B(x0,y0)由椭圆C:y21知a22,b21,c21,即c1.右焦点F(1,0)由3,得(1,n)3(x01,y0)13(x01)且n3y0.x0,y0n.将x0,y0代入y21,得221.解得n21,|.二、填空题6椭圆x24y216被直线yx1截得的弦长为_解析:由消去y并化简得x22x60.设直线与椭圆的交点为M(x1,y1),N(x2,y2),则x1x22,x1x26.弦长|MN|x1x2| .答案:7已知动点P(x,y)在椭圆1上,若A点坐标为(3,0),|1,且0,则|的最小值是_解析:易知点A(3,0)是椭圆的右焦点0,.|2|2|2| |21,椭圆右顶点到右焦点A的距离最小,|min2,|min.答案:8(江苏高考)如图,在平面直角坐标系xOy中,F是椭圆1(ab0)的右焦点,直线y与椭圆交于B,C两点,且BFC90,则该椭圆的离心率是_解析:将y代入椭圆的标准方程,得1,所以xa,故B,C.又因为F(c,0),所以,.因为BFC90,所以0,所以20,即c2a2b20,将b2a2c2代入并化简,得a2c2,所以e2,所以e(负值舍去)答案:三、解答题9设直线yxb与椭圆y21相交于A,B两个不同的点(1)求实数b的取值范围;(2)当b1时,求|AB|.解:(1)将yxb代入y21,消去y,整理得3x24bx2b220.因为直线yxb与椭圆y21相交于A,B两个不同的点,所以16b212(2b22)248b20,解得b.所以b的取值范围为(,)(2)设A(x1,y1),B(x2,y2),当b1时,方程为3x24x0.解得x10,x2.相应地y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厂房建设工程承包合同风险评估与预防措施
- 2025(现汇)外贸合同书模板
- 2025上海市二手房买卖合同模板范文
- 2025企业软件工程师劳动合同
- amc面试题目及答案
- 农学生物化学试题及答案
- 兰坪交警考试题库及答案
- 测试题及答案英语
- 汽车上岗证试题及答案
- 青海日报考试题库及答案
- 《igg4相关性疾病》课件
- 初中地理会考知识点汇总
- 安全生产、环境保护监督管理制度(最终版)
- 《财政学》教学大纲中文版
- 小学数学命题思考
- 砌筑挡土墙搭设脚手架专项方案设计
- 长篇情感电台读文(10篇)精选
- DB35_T 169-2022 森林立地分类与立地质量等级
- 动火作业危害识别及控制措施清单
- 26个科室建设指南
- 安全带检测报告(共8页)
评论
0/150
提交评论