已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.4.1平面向量的数量积的物理背景及其含义一、复习引入:(1)两个非零向量夹角的概念:已知非零向量与,作,则()叫与的夹角.说明:(1)当时,与同向;(2)当时,与反向;(3)当时,与垂直,记;(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0q180(2)两向量共线的判定(3)练习 1.若a=(2,3),b=(4,-1+y),且ab,则y=( C )A.6 B.5 C.7 D.82.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为( B )A.-3 B.-1 C.1 D.3(4)力做的功:W = |F|s|cosq,q是F与s的夹角.二、讲解新课:1平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量|a|b|cosq叫与的数量积,记作ab,即有ab = |a|b|cosq,().并规定0向量与任何向量的数量积为0.探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?2、两个向量的数量积与实数乘向量的积有什么区别?(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.(2)两个向量的数量积称为内积,写成ab;今后要学到两个向量的外积ab,而ab是两个向量的数量的积,书写时要严格区分.符号“ ”在向量运算中不是乘号,既不能省略,也不能用“”代替.(3)在实数中,若a0,且ab=0,则b=0;但是在数量积中,若a0,且ab=0,不能推出b=0.因为其中cosq有可能为0.(4)已知实数a、b、c(b0),则ab=bc a=c.但是ab = bc a = c 如右图:ab = |a|b|cosb = |b|OA|,bc = |b|c|cosa = |b|OA| ab = bc 但a c (5)在实数中,有(ab)c = a(bc),但是(ab)c a(bc) 显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线.2“投影”的概念:作图 定义:|b|cosq叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当q为锐角时投影为正值; 当q为钝角时投影为负值; 当q为直角时投影为0;当q = 0时投影为 |b|; 当q = 180时投影为 -|b|.3向量的数量积的几何意义:数量积ab等于a的长度与b在a方向上投影|b|cosq的乘积.探究:两个向量的数量积的性质:设a、b为两个非零向量,1、ab ab = 02、当a与b同向时,ab = |a|b|; 当a与b反向时,ab = -|a|b|. 特别的aa = |a|2或 |ab| |a|b| cosq = 探究:平面向量数量积的运算律1交换律:a b = b a证:设a,b夹角为q,则a b = |a|b|cosq,b a = |b|a|cosq a b = b a2数乘结合律:(a)b =(ab) = a(b)证:若 0,(a)b =|a|b|cosq, (ab) =|a|b|cosq,a(b) =|a|b|cosq,若0,向量,经过定点A(0,a)以为方向向量的直线与经过定点B(0,a)以为方向向量的直线相交于点P,其中.求点P的轨迹C的方程;例2.设平面内的向量, , ,点P是直线OM上的一个动点,求当取最小值时,的坐标及APB的余弦值解 设 点P在直线OM上, 与共线,而, x2y=0即x=2y,有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成都市 2024-2025 学年小学五年级科学期中素养测评模拟卷及答案
- 2025年负载测试题及答案
- 2025年七年级英语下学期词汇专项突破
- 2025年静脉输血的试题及答案
- 2025年餐饮总监试题及答案
- 2025年山东省公务员面试礼仪技巧测试卷
- 2025年上海市公务员考试申论真题预测卷
- 2025股权转让合同协议书范文
- 2025房产买卖合同协议
- 2025年温州地铁考试题库及答案
- QGDW1175-2013变压器高压并联电抗器和母线保护及辅助装置标准化设计规范
- 园区物业服务方案(3篇)
- 新解读《DZ-T 0130.11 - 2006地质矿产实验室测试质量管理规范 第11部分:岩石物理力学性质试验》新解读
- 工程代签免责协议书
- 承接查验委托协议书
- 快艇买卖合同协议书
- 年产200吨高纯金属铯铷项目报告书
- 导弹基本知识
- 采血后预防淤青的按压方式
- 国企中层领导竞聘笔试题
- 《AI公文写作范例大全:格式、要点与技巧》课件 第5、6章 AI公文写作的方法、AI写作工具的测评
评论
0/150
提交评论