西安电子科大版 汤楠 计算机控制技术6章.ppt_第1页
西安电子科大版 汤楠 计算机控制技术6章.ppt_第2页
西安电子科大版 汤楠 计算机控制技术6章.ppt_第3页
西安电子科大版 汤楠 计算机控制技术6章.ppt_第4页
西安电子科大版 汤楠 计算机控制技术6章.ppt_第5页
已阅读5页,还剩85页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大林 Dahlin 算法 第6章计算机控制系统的离散化设计 直接数字控制 最少拍无纹波计算机控制系统的设计 离散化设计法则首先将系统中被控对象加上保持器一起构成的广义对象离散化 得到相应的以Z传递函数 差分方程或离散系统状态方程表示的离散系统模型 然后利用离散控制系统理论 直接设计数字控制器 由于离散化设计法直接在离散系统的范畴内进行 避免了由模拟控制系统向数字控制器转化的过程 也绕过了采样周期对系统动态性能产生严重影响的问题 是目前采用较为广泛的计算机控制系统设计方法 6 1最少拍计算机控制系统的设计 最少拍设计 是指系统在典型输入信号 如阶跃信号 速度信号 加速度信号等 作用下 经过最少个采样周期 使系统输出的稳态误差为零 系统在采样点的输出值能准确地跟踪输入信号 不存在静差 实质上是时间最优控制系统 系统的性能指标就是系统的调节时间最短 在数字控制过程中 一个采样周期称为1拍 最少拍控制系统对闭环Z传递函数的性能要求是快速性 准确性最少拍控制系统的设计与被控对象的零 极点位置有很密切的关系 6 1 1最少拍控制系统数字控制器分析 在给定被控对象和零阶保持器 广义对象 的的条件下 选择适当的数字控制器D z 以满足对系统提出的性能指标要求 图6 1最少拍控制系统结构图 其中 G z 为广义对象的脉冲传递函数 D z 是数字控制器的脉冲传递函数 闭环脉冲传递函数为误差脉冲传递函数为数字控制器为 G z 是已知的 D z 是待求的 而 z We z 是由性能指标确定的 为了选择适当的数字控制器D z 可以先将性能指标要求表达成希望闭环Z传递函数 z 或者闭环误差Z传递函数We z 或者开环Z传递函数D z G z 然后再根据G z 反求出D z 稳定性 闭环系统应是稳定的 准确性 对于特定的参考输入信号 到达稳态后 系统在采样时刻精确实现对输入的跟踪 快速性 系统以最快速度达到稳态 即调节时间为有限拍 且拍数最小 D z 应是物理可实现的 利用直接数字设计法设计最少拍控制系统 要考虑以下几点 为了使设计简明起见 提出如下三个假设条件 G z 在单位圆上和圆外无极点 1 j0 点除外 G z 在单位圆上和圆外无零点 G0 s 中不含纯滞后 q是T的整数倍 假设条件 根据准确性要求 系统在采样点无稳态误差 根据终值定理得 1 由准确性确定 z 为了确定 z 或We z 讨论在单位阶跃 单位速度 单位加速度三种典型输入信号作用下无稳态误差最少拍系统的 z 或We z 应具有的形式 对于以上三种典型输入信号R z 分别为 T为采样周期 单位阶跃 单位速度 单位加速度 可统一表达为 式A z 中为不含因子的z 1的多项式 对于单位阶跃 m 1 单位速度 m 2 单位加速度 m 3 则有 若要求稳态误差为零的条件是We z 应具有如下形式其中F z 是待定的不含因子 1 z 1 的关于z 1的有理分式或的有限项多项式 快速性要求闭环系统的响应能在最短时间内使采样点上的误差为零 这就要求We z 包含的幂次尽可能小 在满足准确性前提下 若取F z 1 则得到无稳态误差最少拍系统的希望闭环误差Z传递函数就应为希望闭环Z传递函数应为 2 由快速性确定 z 对于不同输入We z z 形式如下 单位阶跃 单位速度 单位加速度 1 单位阶跃输入时也就是说 系统经过1拍 输出就可以无差地跟踪上输入的变化 即此时系统的调节时间ts T T为系统采样时间 误差及输出系列如图6 2所示 3 最少拍系统分析 0T2T 1 e kT kT 0T2T3T4T5T 1 c kT kT 图6 2单位阶跃输入时的误差及输出序列 2 单位速度输入时也就是说 系统经过2拍 输出就可以无差地跟踪上输入的变化 即此时系统的调节时间ts 2T T为系统采样时间 误差及输出系列如图6 3所示 3 单位加速度输入时也就是说 系统经过3拍 输出就可以无差地跟踪上输入的变化 即此时系统的调节时间ts 3T T为系统采样时间 误差及输出系列如图6 4所示 0T2T3T e kT kT 0T2T3T4T 8T26T24T22T2 c kT kT 图6 4单位加速度输入时的误差及输出序列 三种典型输入的最少拍系统 由上面讨论可以看出 最少拍控制器设计时 We z 或 z 的选取与典型输入信号的形式密切相关 即对于不同的输入R z 要求使用不同的闭环Z传递函数 所以这样设计出的控制器对各种典型输入信号的适应能力较差 若运行时的输入信号与设计时的输入信号形式不一致 将得不到期望的最佳性能 6 1 2最少拍控制系统数字控制器的设计 设计最少拍控制系统数字控制器的方法步骤如下 根据被控对象的数学模型求出广义对象的脉冲传递函数G z 根据输入信号类型 确误差脉冲传递函数 将 代入式进行Z变换运算 即可求出数字控制器的脉冲传递函数D z 根据结果 求出输出序列及其响应曲线等 根据给定的G z 可直接求解出对应于m 1 2 3时的数字控制器D z D z 的确定 例6 1 被控对象的传递函数采样周期 采用零阶保持器 试设计在单位速度输入时的最少拍数字控制器 解 该系统的广义对象脉冲传递函数为 由于输入 得 控制器的脉冲传递函数 验证所求D z 能否满足性能指标要求 输出和误差变化的动态过程如图6 5所示 从图中可以看出 系统在单位速度信号输入作用下 系统经过了两个采样周期以后 系统在采样点上的过渡过程结束 调整时间为2拍 且在采样点上 系统的输出完全跟踪输入 稳态误差为零 因此 所求得数字控制D z 完全满足设计指标要求 对于单位阶跃信号输入 则由此可知 也是经过2拍后过渡过程结束 但在第一个采样时刻时 有100 的超调量 其输出变化的动态过程如图6 6 a 所示 对于单位加速度信号输入 则由此可知 过渡过程仍为2拍 但有恒定的稳态误差 其输出变化的动态过程如图6 6 b 所示 按某种典型输入设计的最少拍系统 当输入形式改变时 系统的性能变坏 输出响应不一定理想 这说明最少拍系统对输入信号的变化适应性较差 6 1 3任意广义对象的最少拍控制器设计 当三个假设条件不满足时 如何进行设计 如图6 1所示的系统得到当G z 中含有Z平面单位圆外或圆上的极点时 并且该极点没有与D z 或We z 的零点完全对消的时 则它将成为 z 的极点 从而造成整个闭环系统不稳定 又得到当G z 中含有Z平面单位圆外或圆上的零点时 并且该零点没有与D z 或We z 的极点完全对消的时 则它将成为不稳定的极点 从而使数字控制器的输出趋向于无穷大 造成整个闭环系统不稳定 为保证闭环系统稳定 当G z 中含有Z平面单位圆外或圆上的零 极点时 它应被D z 或We z 的极 零点相抵消 而用D z 的零点或极点抵消G z 的极点或零点是不允许的 这是因为 简单地利用D z 的零点或极点去对消G z 中的不稳定零点或极点 从理论上来说可以得到一个稳定的闭环系统 但这种稳定是建立在零极点完全对消基础上的 当系统参数产生漂移 或者对象参数辨识有误差时 这种零极点对消就不可能准确实现 从而引起闭环系统不稳定 所以建立在零极点对消基础上的稳定系统实际上是不可能稳定工作的 没有实用价值 设最少拍系统广义Z传递函数为其中 b1 b2 bu是G z 的u个不稳定零点 a1 a2 av是G z 的v个不稳定极点 G z 是G z 中不包含Z平面单位圆外或圆上的极 零点时的部分 z N为G z 中含有的纯滞后环节 为避免发生D z 与G z 的不稳定零极点对消 应满足如下稳定性条件 1 We z 的零点应包含G z 中全部不稳定的极点 其中 F1 z 是关于z 1的多项式且不包含G z 中的不稳定极点aj 除 1 j0 外 2 G z 在单位圆上或圆的零点应全部包含在希望闭环Z传递函数 z 的零点中 其中 是关于z 1的多项式且不包含G z 中的不稳定零点bi 3 如果G z 中含有纯滞后的环节即z N N为整数 则G z 分子中的z 1因子应全部包含在 z 分子中 这会使系统过渡过程时间延长 其中 F2 z 是关于z 1的多项式且不包含G z 中的纯滞后的环节和不稳定零点bi 因此 满足了上述稳定性条件后的D z 不再包含G z 的Z平面单位圆上或单位圆外零极点和纯滞后的环节 综上分析 为了设计出响应时间尽可能短的计算机控制系统 在选择希望闭环Z传递函数W z 或We z 时 应满足如下限制条件 1 We z 的零点中应含G z 的全部不稳定极点 除 1 j0 外 2 z 1 We z 的零点中应含G z 的全部单位圆上和圆外的零点 3 z 1 We z 与G z 的z 1因子个数相同 由最少拍系统的设计原则可知 要满足上述限制条件 We z 1 z 1 mF z 中的F z 不能简单地使F z 1 而应选F z 的零点中含G z 的全部不稳定极点 并使We z 为最简单形式 使E z 含因子的多项式的项数最少 使误差以最快速度衰减到零 综上所述 得到满足上述限制条件的闭环Z传递函数 z 和闭环误差Z传递函数We z 的一般形式为其中k为常系数 解 1 若不按上述原则设计时 对单位阶跃 例6 2 讨论对于不稳定对象按最少拍控制对比修正前后闭环系统的稳定情况 输出Z变换 看似一个稳定的控制系统 但若对象产生漂移变为 按上述原则设计的最少拍控制器的情况下 2 按上述原则设计时 则 对象变为 例6 3 设最少拍计算机控制系统 如图6 1所示 被控对象的传递函数设采样周期 试设计单位阶跃输入时的最少拍数字控制器 解 广义对象的脉冲传递函数 G z 中含有一个单位圆外的零点z 1 4815 一个z 1因子 单位圆上的极点 m 1 u 1 v 1 N 1 利用比较等式两边的系数 可得 根据上述条件 得 代入方程组 最少拍数字控制器为 对单位阶跃信号的的响应为 例6 4 图6 1所示系统 被控对象为一积分环节加纯滞后试设计单位阶跃输入时的最少拍数字控制器 解 广义对象的脉冲传递函数 G z 中含有滞后环节z 3 m 1 u 0 v 0 N 3 因此 由 数字控制器为 最少拍系统具有结构简单 设计方便和易用微机实现等优点 但也存在着一些缺点 如对输入信号类型的适应性较差 对系统参数变化很敏感 出现随机扰动时系统性能变坏 只能保证采样点偏差为零或保持恒定值 不能确保采样点之间的偏差为零或保持恒定值 受饱和特性限制 其采样频率不宜太高等等 6 2最少拍无纹波计算机控制系统的设计 按最少拍控制系统设计出来的闭环系统 在有限拍后即进入稳态 这时闭环系统输出在采样时刻精确地跟踪输入信号 但是在两个采样时刻之间 系统的输出存在着纹波或振荡 这种纹波不但影响系统的控制性能 产生过大的超调和持续振荡 而且还增加了系统功率损耗和机械磨损 最少拍无纹波数字控制器的设计则要求 系统在典型信号的作用下 经过尽可能小的节拍 一般为1 3个采样周期 后 系统应达到稳定状态 且采样点之间没有纹波 例 设图6 1所示系统的控对象的传递函数设采样周期 试设计单位阶跃输入时的最少拍数字控制器 并观察误差与控制量的输出 1 纹波产生的原因 解 设 0 5 则其输出响应如图所示 可以看出系统输出存在波纹 进一步分析可知 产生波纹的原因是数字控制器D z 输出序列u t 在系统输出c t 过渡过程结束后 还在围绕其平均值不停地波动 其输出如图所示 U z 含有单位圆内左半平面的极点 根据Z平面上极点分布与脉冲响应的关系 单位圆内左半平面的极点虽然是稳定的 但对应的脉冲响应是振荡的 控制器波动的原因 由图6 1可得到 2 消除纹波的附加条件 从对前面最少拍系统的分析可知 若要求系统的输出c t 在有限拍内结束过渡过程 就要求选择的希望闭环Z传递函数 z 为关于z 1的有限多项式 如果要求u t 在有限拍内结束过渡过程 就要求为关于z 1的有限多项式 产生波纹的原因是因为不是关于z 1的有限多项式 这样使u t 的过渡过程不结束 从而使输出c t 产生波动 要想消除波纹 就要求u t 和c t 同时结束过渡过程 否则 就会产生波动现象 要求D z We z 为z 1的有限多项式 即 z 能G z 被整除即可 设计系统时应使 z 零点中含G z 的全部零点 使得G z 的全部零点被 z 的零点所抵消 设计最小无纹波系统的方法 按最小有纹波设计方法确定 z 再按无纹波附加条件 使 z 零点中必须包含G z 的全部零点 确定 z 设最少拍系统广义Z传递函数为其中 b1 b2 bu是G z 的u个零点 a1 a2 av是G z 的v个不稳定极点 f1 f2 fw是G z 的w个稳定极点 k1为常系数 为G z 中含有的纯滞后环节 则可得其中k为常系数 其中由此得到数字控制器 例对于图所示的系统 设 T 1s 试按输入为单位阶跃信号 确定无波纹最少拍系统的数字控制器D z 解 数字控制器的输出为 系统在采样点的输出为 可见D z We z 为关于的有限多项式 并且u t 经过2拍后过渡过程结束 同时 经过两拍后C t 的过渡过程也结束了 也就是u t 与C t 同时结束过渡过程 由此可见 此时系统经过2拍以后就消除了波纹 如图a所示如果所求得的系统在单位速度信号输入下 其输出响应如图b所示 可以看出 系统经过2拍后过渡过程结束 但始终存在稳态误差1 418 在上例中 如果按输入为单位速度信号 来确定无波纹最少拍系统的数字控制器D z 则有 此系统在单位速度信号作用下 过渡过程为3拍 并且无波纹 其输出响应如图a所示 所求得的系统在单位阶跃信号输入下 图b所示 系统经过3拍后过渡过程结束 但有100 的超调量 并且无波纹 例6 6 已知被控对象传递函数为采样周期 试设计单位阶跃输入时的最少拍无纹波数字控制器 将按单位阶跃输入时的最少拍无纹波设计的数字控制器 改为按单位速度输入时 分析其控制效果 解 1 按单位阶跃输入设计系统的广义对象脉冲传递函数为因G z 有z 1因子 零点z 0 717 极点z1 1 z2 0 368闭环脉冲传递函数 z 应包含z 1因子和G z 的全部零点 得 由 数字控制器的脉冲传递函数为 用U z 判断所涉及的D是否最少拍无纹波系统 2 按单位阶跃输入设计的改为单位速度输入 所得序列的结果表明 系统经2个节拍后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论