可视化整理spss统计分析实例分析PPT课件.ppt_第1页
可视化整理spss统计分析实例分析PPT课件.ppt_第2页
可视化整理spss统计分析实例分析PPT课件.ppt_第3页
可视化整理spss统计分析实例分析PPT课件.ppt_第4页
可视化整理spss统计分析实例分析PPT课件.ppt_第5页
已阅读5页,还剩87页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

SPSS统计分析 案例应用 SPSS基本统计分析方差分析相关分析 1 基本统计分析 基本统计分析 描述性统计分析是统计分析的第一步 做好这第一步是下面进行正确统计推断的先决条件 SPSS的许多模块均可完成描述性分析 但专门为该目的而设计的几个模块则集中在描述菜单中 包括 1 1频数分析 频数分析目的 基本统计分析往往从频数分析开始 通过频数分析能够了解变量取值的状况 对把握数据的分布特征是非常有用的 1 编制频数分布表频数 即变量值落在某个区间 或某个类别 中的次数百分比 即各频数占总样本数的百分比有效百分比 即各频数占有效样本数的百分比 有效样本数 总样本 缺失样本数累计百分比 即各百分比逐级累加起来的结果 最终取值为100 2 绘制统计图 1 1频数分析 频数分析的基本操作 1 分析 描述统计 频率 2 将频数分析变量选择到变量框中 3 单击表格按钮选择绘制统计图形 选择饼图 1 1频数分析 1 1频数分析 输出结果 1 1频数分析 例1 例1 1分析住房状况调查数据中户主的从业状况和目前所住房屋的产权情况思路 利用频数分布表及图形条件 都是分类变量 直接分析步骤 调用命令 Analyze DescriptiveStatistics Frequencies选择分析变量选择图形选择分布表输出格式 1 1频数分析 例1分析结果 分布表中累计百分比基本没有意义 应该删除 1 1频数分析 扩展功能 分位数 PencentileValues 计算分位数 适用于定距数据数据按升序排序后 找到若干个分位点上的变量值quartiles 计算四分位数25 QL 50 中位数 75 QU cutpointsfornequalgroups n等份percentile 自定义百分位点 其他基本统计量集中趋势 CentralTendency 离散趋势 Dispersion 分布形态 Distribution 1 1频数分析 扩展功能例 案例1 2分析人均住房面积的分布 并对本市户口和外地户口家庭的人均住房面积分布情况进行比较 特点 人均住房面积 是定距型变量步骤 根据 人均住房面积 建立分组变量 调用命令频数分析命令Frequencies选择分组变量作为分析变量再一次使用频数分析命令Frequencies选择 人均住房面积 作为分析变量不选择生成频数表 选择不生成图形选择计算四分位数根据 户口状况 对数据进行拆分 SplitFile 再重复上一步的工作 计算分类的四分位数 案例1 2分析结果1 案例1 2分析结果2 频数分析 例 测量100名健康成人的血清蛋白总含量 形成数据serum 克 升 使用频数分析了解这一数据的统计特征 SPSS的操作步骤 1 菜单中点分析 描述统计 频率 进入频率对话框 频数分析 SPSS的操作步骤 2 将变量选入变量窗口 再点击统计量 进行设置 完成后点继续返回 SPSS的操作步骤 2 在频率主对话框中分别进入图表和格式进行设置 完成后点继续返回 最后点确定 SPSS的输出结果 该教学案例数据解析 均值 平均值 平均数 表示的是某变量所有取值的集中趋势或平均水平 例如 学生某门学科的平均成绩 公司员工的平均收入 某班级学生的平均身高等 中值是在一组数据中居于中间的数 特别注意的地方是 这组数据之前已经经过升序排列 即在这组数据中 有一半的数据比它大 有一半的数据比它小 如果这组数据包含偶数个数字 中值是位于中间的两个数的平均值 1020405070102030405060 百分位数分析 比如 假设某个考生在入学考试中的语文部分的原始分数为54分 相对于参加同一考试的其他学生来说 他的成绩如何并不容易知道 但是如果原始分数54分恰好对应的是第70百分位数 我们就能知道大约70 的学生的考分比他低 而约30 的学生考分比他高 众数 Mode 统计学名词 在统计分布上具有明显集中趋势点的数值 代表数据的一般水平 众数可以不存在或多于一个 修正定义 是一组数据中出现次数最多的数值 叫众数 有时众数在一组数中有好几个 用M表示 理性理解 简单的说 就是一组数据中占比例最多的那个数 全距也称为极差 是数据的最大值与最小值之间的绝对差 在相同样本容量情况下的两组数据 全距大的一组数据要比全距小的一组数据更为分散 计算公式 最大值 最小值 1 2描述分析 描述分析目的 获取数据的均值 标准差 峰度等数据 进一步把握数据的集中趋势 离散程度和分布形状 基本描述统计量刻画集中趋势的统计量刻画离散程度的统计量刻画分布形态的统计量 1 2描述分析 刻画集中趋势的统计量集中趋势指一组数据向某一中心值靠拢的倾向 计算刻画集中趋势的统计量正是要寻找能够反应数据一般水平的 代表值 或 中心值 常用统计量 均值 中位数 众数 1 2描述分析 刻画离散程度的统计量离散程度是指一组数据远离其 中心值 的程度 如果数据都紧密地集中在 中心值 的周围 数据的离散程度较小 说明这个 中心值 对数据的代表性好 相反 如果数据仅是比较松散地分布在 中心值 的周围 数据的离散程度较大 则此 中心值 说明数据特征是不具有代表性的 常用统计量 全距 方差 标准差 标准差 standarddeviation StdDev 表示某变量的所有变量值离散程度的统计量 SPSS中计算的是样本标准差 方差 variance 标准差的平方 SPSS中计算的是样本方差 极差 range maximum minimum 1 2描述分析 刻画分布形态的描述统计量数据分布形态主要指数据分布是否对称 偏斜程度如何 分布陡峭程度等 常用统计量 偏度 峰度偏度 描述变量取值分布形态对称性的统计量 当分布为对称分布时 正负总偏差相等 偏度值等于0 当分布为不对称分布时 正负总偏差不相等 偏度值大于0或小于0 偏度值大于0表示正偏差值大 称为正偏或右偏 偏度值小于0表示负偏差值大 称为负偏或左偏 偏度绝对值越大 表示数据分布形态的偏斜程度越大 峰度 描述变量取值分布形态陡峭程度的统计量 当数据分布与标准正态分布的陡峭程度相同时 峰度值等于0 峰度大于0表示数据的分布比标准正态分布更陡峭 为尖峰分布 峰度小于0表示数据的分布比标准正态分布平缓 为平峰分布 扁平分布 尖峰分布 峰态 左偏分布 右偏分布 与标准正态分布比较 偏态 扁平分布 尖峰分布 扁平分布 尖峰分布 左偏分布 扁平分布 尖峰分布 右偏分布 左偏分布 扁平分布 尖峰分布 1 2描述分析 计算基本描述统计量的操作 1 分析 描述统计 描述 2 将分析变量选择到变量框中 3 单击选项按钮指定基本统计量 1 2描述分析 1 2 2应用例一 案例1 3 计算人均住房面积的基本描述统计量 并对本市户口和外地户口家庭的情况进行比较 操作步骤 调用命令Analyze DescriptiveStatistics Descriptives选择 人均面积 作为分析变量选择必要的分析指标根据户口状况对数据进行拆分 SplitFile 重新调用命令 Descriptives计算不同户口状况的指标值 1 2 2应用例一分析结果 全部数据分析结果 分组数据分析结果 1 2描述性分析 描述性分析主要用于输出变量的各类描述性统计量的值 通过上一节的学习可知 频数分析同样可以做到 都是以计算数值型单变量的统计量为主 描述性统计分析没有图形功能 也不能生成频数表 但描述性分析可以将原始数据转换成标准正态评分值 并以变量形式存入数据文件中 以便后续分析时应用 在多元统计分析中 对均值差异较大的变量 采用变量标准化后的数据进行分析 可以消除均值差异带来的影响 描述统计量 例 调查记录了130名正常男性血液中的红细胞数 RBC 万 mm 用描述统计量查看该数据的统计特征 SPSS的操作步骤 1 菜单中点分析 描述统计 描述 进入描述对话框 2 将变量算入变量窗口 进入选项对话框进行设置 完成后点继续 并确定 SPSS的输出结果 数据编辑窗口中 在原变量右侧多了一列由原变量标准化产生的 Z 原变量名 的列 1 3交叉分组下的频数分析 目的了解不同变量在不同水平下的数据分布情况例 学习成绩与性别有关联吗 两变量 例 职业 性别 爱逛商店有关联吗 三变量 分析的主要步骤产生交叉列联表分析列联表中变量间的关系 列联表 列联表分析过程 可通过Crosstabs对话框实现 AnalyzeDescriptiveStatisticsCrosstabs 定义变量 形成数据集3 指定freq为加权变量 Crosstabs对话框 Crosstabs对话框 本例中选择chi square 2020 1 27 47 列联表中的卡方独立性检验 H0 行变量与列变量独立显著性水平 0 05 Crosstabs对话框 本例中选择频数及频率输出项 输出结果 输出结果 显著值为0 430 0 05接受零假设 态度与公司没有关系 2 方差分析 方差分析概述背景案例统计学原理相关统计量SPSS操作SPSS结果解读方差分析案例 2 1方差分析概述 2 1 1背景案例影响农作物产量的因素可能有多个 如品种 施肥量 地域特征等 在众多的因素中 有些因素会对产量有明显的影响 有些因素的影响不大 因此 找到中影响因素中起重要的和关键作用的因素是非常重要的 进一步 在掌握了关键因素后 如品种 施肥量等 还需要对不同品种 不同施肥量的产量进行比较 研究究竟哪个品种的产量高 施肥量究竟多少最为合适 在制定广告宣传策略时 不同方案所获得的广告效果可能是不一样的 广告效果可能会受到广告形式 地区规模 播放时间段 播放频率等因素的影响 需要研究在影响广告效果的众多因素中 哪些因素是主要的 哪些是次要的 哪些因素水平是最合理的 对这种类似问题的研究可以通过方差分析来实现 2 1方差分析概述 2 1 2方差分析相关概念观测变量 农作物产量 广告效果因素 控制变量 品种 施肥量 播放时间段等因素水平 因素的不同类别 如甲品种 乙品种就是品种这一变量的两个水平 单因素方差分析 多因素方差分析 2 1方差分析概述 2 1 3方差分析统计学原理观测变量取值变化原因 1 控制变量 2 随机变量如果相对于随机变量引起的观测值差异 控制变量引起的观测值差异较大 则说明控制变量对观测变量有显著影响 在统计学中 控制变量和随机变量引起的差异可以分别用一个统计量来表示 单因素方差分析中 分别用SSA SSE来表示 SSA 组间差异 组间离差平方和 主要是由控制变量的不同水平造成的差异 SSE 组内差异 组内离差平方和 主要是由随机变量引起的差异 SSA SSE SSTSST 总差异 总离差平方和 方差分析任务 判定SSA相对于SST 或SSE 的大小 SSA相对较大 则表明控制变量起到了显著影响 若相对较小 则表明控制变量没有显著影响 2 1方差分析概述 2 1 3单因素方差分析统计学原理假设控制变量会对观测值不会产生显著影响 将总离差 SST 分解为组间离差平方和 SSA 和组内离差平方和 SSE 比较SSA与SST的相对大小 SSA与SST的相对大小要受到样本规模 控制变量水平数的影响 为消除这些因素的影响对SSA SST要进行一定的处理 分别除以自由度 用统计量F来表示SSA的相对大小 方差分析 从观测变量的部分取值推测观测变量总体取值与随机变量的关系 部分是否能够代表总体情况 由于存在随机抽样和样本数量较少等原因 通过分析样本的出的结论不能直接用于总体 要进行假设检验 F是随机变量 服从一定的分布 其取值会因为具体的样本的不同而不同 计算研究样本的F值 即F的观测值 并计算该F观测值对应概率p值 如果p值很小 一般是小于0 05 说明F取到该观测值的概率很小 是不可能发生的 则认为假设 控制变量对观测值没有显著影响 是不对的 也就是 控制变量会对观测变量产生显著影响 2 1方差分析概述 2 1 4单因素方差分析基本假设 对总体分布的假设 总体服从正态分布各处理组总体方差相等 方差齐性或方差同质性 正态分布检验 根据大数定律和中心极限定理原理 假设满足 方差齐性检验 对控制变量不同水平下观测变量总体的方差是否相等进行假设检验 在SPSS中可以通过方差同质性检验进行 2 2SPSS方差分析操作 2 2 1方差分析数据形式离差分解时仅仅是对观测水平这一列的数值进行分析 但是也要有存放控制变量的列 正确的数据格式是统计分析的前提 观测变量 控制变量 2 2SPSS方差分析操作 2 2 2SPSS操作步骤打开的数据格式分析 比较均值 单因素方差分析选择观测变量 因子 控制变量 因变量 只能选择一个因子 选项 选择 方差同质性检验 缺失值处理 2 3SPSS方差分析结果解读 P值 显著性 0 515 远大于基准值0 05 说明假设 方差齐性 正确 即控制变量不同水平下各组的方差相同 满足方差分析的前提 P值 显著性 0 000 远小于基准值0 05 说明假设 控制变量对观测变量没有显著影响 即广告形式对销售额没有显著影响 不正确 即控制变量不同水平下各组的方差不相同 结论 广告形式对销售额有显著影响 2 3SPSS方差分析结果解读 结论 广告形式用报纸获得的销售额最高 宣传品的效果最不好 62 单因素方差分析 4 SPSS实现举例 例 在大熊猫形象经济贡献的调查中 被调查者的教育背景分为五个层次 A高中 中专及以下B大专C大学本科D硕士E博士及以上 在此 可分析不同教育水平的游客对于景区的购物质量接待满意度作用有无不同 12 您对四川购物接待质量满意吗 1不满意2有点不满意3不好说4有点满意5非常满意25 您的教育背景 A高中 中专及以下B大专C大学本科D硕士E博士及以上 63 单因素方差分析 第1步分析 由于考虑的是一个控制变量 教育背景 对一个观测变量 购物接待质量满意度 的影响 而且是4种教育背景 所以不适宜用独立样本T检验 仅适用两组数据 应采用单因素方差分析 第2步数据的组织 数据分成两列 一列是购物质量满意度 变量名为 V36 另一变量是教育背景 变量值分别为1 2 3 4 变量名为 CE25 输入数据并保存 第3步方差相等的齐性检验 由于方差分析的前提是各个水平下 这里是不同的教育背景CE25影响下的购物接待质量满意度V36 的总体服从方差相等的正态分布 且各组方差具有齐性 其中正态分布的要求并不是很严格 但对于方差相等的要求是比较严格的 因此必须对方差相等的前提进行检验 64 1 1单因素方差分析 不同教育背景的方差齐性检验 方差同质性检验 结果 方差齐性检验的H0假设是 方差相等 从上表可看出相伴根据Sig 0 393 0 05 说明应该接受H0假设 即方差相等 故下面就用方差相等的检验方法 65 单因素方差分析 五种不同教育背景的方差检验 ANOVA 结果 上表是教育背景方差分析的结果 组间 BetweenGroups 平方和 SumofSquares 为17 256 自由度 df 为4 均方为4 314 组内 WithinGroups 平方和为809 535 自由度为805 均方为1 006 F统计量为4 290 由于组间比较的相伴概率Sig p值 0 002 0 05 故应拒绝H0假设 四种教育背景对购物满意度影响效果无显著差异 说明四种教育背景对购物接待质量满意度的影响效果有显著性差异 66 单因素方差分析 第4步多重比较分析 通过上面的步骤 只能判断4种教育背景对于购物满意度的影响是否有显著差异 如果想进一步了解究竟是哪种教育水平与其他组有显著性的均值差别 即哪种教育水平影响更大 等细节问题 就需要在多个样本均值间进行两两比较 由于第3步检验出来方差具有齐性 故选择一种方差相等的方法 这里选LSD方法 Significancelevel 显著性水平 取0 05 67 1 1单因素方差分析 第5步运行主要结果及分析 从整个表反映出来五种教育背景之间1与2 3 4 2与3之间不存在显著差异 其它均存在显著差异 68 1 1单因素方差分析 均值折线图 上图为几种教育背景均值的折线图 可以看出均值分布比较陡峭 均值差异也较大 3相关分析 相关分析概述SPSS相关分析操作SPSS相关分析结果解读SPSS相关分析案例 3 1相关分析概述 家庭收入和支出 子女身高和父母身高的关系 一个人的身高和体重的关系 相关分析 研究两个变量相互关系的密切程度和变化趋势 并用适当的统计指标描述 3 1相关分析概述 相关分析与方差分析的比较相同点 分析两个变量之间是否有关系不同点 相关分析可以比较两个变量的变化趋势的异同 方差分析不能 3 1相关分析概述 相关分析工具 散点图 数值散点图 将数据以点的形式画在直角坐标系上 通过观察散点图能够直观的发现变量间的相关关系及它们的强弱程度和方向 在实际分析中 散点图经常表现出某些特定的形式 如绝大多数的数据类似于 橄榄球 的形状 或集中形成一根 棒状 而剩余的少数数据点则零散地分布在四周 通常 橄榄球 和 棒状 代表了数据对的主要结构和特征 可以利用曲线将这种主要结构的轮廓描绘出来 使数据的主要特征更突出 3 1相关分析概述 散点图简单散点图 表示一对变量间统计关系的散点图 矩阵散点图 以矩阵形式在多个坐标轴上分别显示多对变量间的统计关系 r 1 r 0 7 0 8 r 0 r 0 r 0 7 0 8 r 1 完全正相关 正相关 无相关 完全负相关 负相关 无相关 3 1相关分析概述 矩阵散点图 弄清各坐标轴所代表的变量 课题总数 专著数 论文数 课题总数 论文数 专著数 横轴 从最底层一条向上依次为论文数 专注数 课题总数 纵轴 从最左侧一条向右依次为课题总数 专注数 论文数 3 1相关分析概述 相关系数以数值的方式精确的反映了两个变量间线性相关的强弱程度 相关系数r的取值在 1 1之间 r 0表示两变量存在正的线性相关关系 r0 8表示两变量有较强的线性关系 r 0 3表示两变量之间的线性关系较弱 3 1相关分析概述 相关系数种类1 Pearson简单相关系数 度量两定距型变量的线性相关性 2 Spearman等级相关系数 度量定序变量间的线性相关关系 定序变量 区别等级次序的变量 定序变量能决定次序 例如文化程度可以分为大学 高中 初中 小学 文盲 年龄可以分为老 中 青 但是 定序变量在只具有大于或小于的性质 只能排列出它们的顺序 而不能反映出大于或小于的数量或距离 比如大学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论