证明(二)(三)学案.doc_第1页
证明(二)(三)学案.doc_第2页
证明(二)(三)学案.doc_第3页
证明(二)(三)学案.doc_第4页
证明(二)(三)学案.doc_第5页
已阅读5页,还剩73页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.1你能证明它们吗(1)教师寄语:良好的开端是成功的一半学习目标:1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤步骤和书写格式。2、经历“探索-发现-猜想-证明”的过程,能够用综合法证明等腰三角形的有关性质定理。3、通过探究,养成严谨的科学态度、不懈的探究精神和良好的说理方法。学习过程:一、 前置准备问题1:回忆已经学过的几何基本知识,并解决下列问题1、 任务:请你用自己的语言说一说证明的基本步骤。列举我们已知道的公理:、公理:同位角 ,两直线平行。公理:两直线 ,同位角 。 公理: 的两个三角形全等。公理: 的两个三角形全等。 公理: 的两个三角形全等。公理:全等三角形的对应边 ,对应角 。2说明:等式的有关性质和不等式的有关性质都可以看作公理。二、 自主学习:问题2:能用所学知识进行规范证明1任务:利用已有的公理和定理证明:两角及其中一角的对边对应相等的两个三角形全等。”“2教师引导:(1)这个命题的题设和结论分别是什么?(2)利用现有的已知条件和已经学过的公理能不能证明这个命题?(3)请同学们思考并完成证明过程要让所有学生熟练的写出证明过程,准确的理解因为和所以之间的对应关系,有意识地培养学生严谨的思维品质,让学生“言之有据”三、 合作共建:问题3:通过添加辅助线证明等腰三角形的性质1任务: 讨论:如何证明等腰三角形的性质?(1)请同学们说出这个性质(2)你能利用已有的公理及定理证明这些结论吗?2思考:根据以上证明过程你能解决课本中的“想一想”吗?四、归纳总结:1、我的收获?2、我不明白的问题?五、例题解析:在ABC中,AD是角平分线,DEAB, DFAC,试猜想EF与AD之间有什么关系?并证明你的猜想。六、当堂训练:1、下列各组几何图形中,一定全等的是( )A、各有一个角是550的两个等腰三角形;B、两个等边三角形;C、腰长相等的两个等腰直角三角形;D、各有一个角是500,腰长都为6cm的两个等腰三角形.2、如图,已知:,AB=CD,若要使ABECDF,仍需添加一个条件,下列条件中,哪一个不能使ABECDF的是( )A、A=B ; B、BF=CE; C、AEDF; D、AE=DF.3、如果等腰三角形的一个内角等于500则其余两角的度数为 。4、(1)如果等腰三角形的一条边长为3,另一边长为5,则它的周长为 。(2)等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的腰长为 。5、ABC中, AB=AC, 且BD=BC=AD,则A的度数为 。6、如图,已知D、E在ABC的边BC上,AB=AC,AD=AE,求证:BD=CE 学习笔记:课下训练:P5 习题1、2中考真题:已知:如图,ABC中,AD是高,CE是中线,DC=BE, DGCE,G是垂足,求证:(1)G是CE中点(2)B=2BCE1.2你能证明它们吗(2)教师寄语:未来与期待总是并肩向我们走来学习目标:1、能够证明等腰三角形的判定定理,并会运用其定理进行证明。2、结合实例体会反证法的含义。3、经历探索、猜想、证明”的过程,进一步发展推理证明意识和能力。学习过程:一、 前置准备问题1:根据所学知识解决下列问题1、 等腰三角形的性质是什么?2、 等腰三角形的一个内角为700,则顶角为 。3、 等腰三角形的一个外角为1000,则其顶角顶角为 。 二、 自主学习:问题2:等腰三角形中相等线段的证明1任务:(1)在等腰三角形中作出一些线段(角平分线、中线、高),你能发现其中一些相等的线段吗?你能证明你的结论吗?在上面三个等腰三角形分别作出两底角的平分线、两腰上的中线、两腰上的高,判断对应的线段是否相等(2)等腰三角形的两底的角平分线相等吗?怎样证明。已知:求证:证明:得出定理: 。这个命题的证明可以在教师指导下完成,然后提出下面的问题3问题3:等腰三角形两条腰上的中线相等吗?高呢?还有其他的结论吗?请你证明它们,并与同伴交流。三、 合作共建;1、 请同学们阅读P6的问题(1)、(2),由此得到什么结论?2、 我们知道等腰三角形的两个底角相等,反过来此命题成立吗?并与同伴交流,由此得到什么结论?得出定理: ;简称: 。3、 请同学们阅读P7“想一想”,这一结论成立吗?你能证明吗?若不会证明,请看P8小明是怎样证明的,这种证明问题的方法与以前的证明方法相同吗?4、 总结反证法的定义5、 举例说明反证法的应用:三角形中不可能有两个直角四、 归纳总结:1、我的收获?2、我不明白的问题?五、 例题解析:如图,ABC中,D、E分别是AC、AB上的点,BD与CE相交于点O,给出下列四个条件EBO=DCO; BEO=CDO;BE=CD;OB=OC,上述四个条件中,哪两个条件可判定是等腰三角形,请你写出一种情形,并加以证明。六、当堂训练:1、已知:如图,在ABC中,AB=AC, BAC=900, ,DEAB,则图中等腰直角三角形共有( )(A).3个;(B).4个;(C).5个;(D).6个,2、已知:如图,在ABC中,AB=AC, BAC=1200, D、E是BC上两点,且AD=BD,AE=CE,猜想ADE是 三角形。3、如图,在ABC中,ABC与ACB的平分线交与点O,若AB=12,AC=18,BC=24,则ABC的周长为( )(A).30;(B).36;(C).39;(D).42。4、在ABC中,AB=AC, A=360,DE、CE是三角形的平分线且交于点O,则图中共有 个等腰三角形。5、如图:下午14:00时,一条船从处出发,以28海里/小时的速度,向正北航行,16:00时,轮船到达B处,从A处测得灯塔C在北偏西280,从B处测得灯塔C在北偏西560,求B处到灯塔C的距离.学习笔记:课下训练:P9:1、2、3、4中考真题:同一底上的两底边相等的梯形是等腰梯形吗?如果是,请给出证明;如果不是,请给出反例。1.3你能证明它们吗(3)教师寄语:一个能思考的人,才是一个力量无边的人。学习目标:1、掌握“等边三角形判定”及“300角的直角三角形的性质”的推论,会用上述结论进行相关的计算和证明。2、将探索、发现、猜想、证明有机结合起来,使数学思维的创造性和严谨性协调发展。学习过程:一、 前置准备:1已知ABC中,AB=AC=5cm,请增加一个条件使它变为等边三角形。2利用刻度尺两测量一下含300角的三角板的斜边和较短的直角边,与同伴比较结果,交流其关系。二、 自主学习:问题1:具备什么条件的三角形是等边三角形1、 有一个角是600的等腰三角形是等边三角形吗?试着证明你的结论。得出定理:有一个角是 的 三角形是等边三角形。2如果三角形中有两个角都等于600, ,那么这个三角形是不是等边三角形?3如果三角形中三个角都相等,那么这个三角形是不是等边三角形?三、 合作共建问题2:探索含300角的直角三角形的性质1任务:用两个含300角的三角板,你能拼出一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由。2思考:在直角三角形中,300角所对直角边与斜边有什么关系?并试着证明。3总结:在直角三角形中,300角所对直角边等于斜边的 。(要继续强调证明的规范性)四、归纳总结:1、我的收获?2、我不明白的问题?五、例题解析:等腰三角形的底边为150,腰长为2a,求腰上的高。六、当堂训练:1、判断:(1)在直角三角形中,直角边是斜边的一半。( )(2)有一个角是600的三角形是等边三角形。( )2、证明三个角都相等的三角形是等边三角形。学习笔记:课下训练:1、等腰三角形的底边等于150,腰长为20,则这个三角形腰上的高是 。2、在RtABC中,ACB=900, A =300,CDAB,BD=1,则AB= 。3、在ABC中,AB=AC,BAC=1200,D是BC的中点, DEAC,则AE:EC= 。4、如图,在RtABC中,C=900,沿B点的一条直线BE折叠ABC,使点C恰好落在AB的中点D处,则A= .5、在RtABC中,C=300,ADBC,你能看出BD与BC的大小关系吗?中考真题:已知:如图,ABC中,BCAC,DEAC,点D是AB的中点,A=300,DE=1.8,求AB的长。1.4直角三角形(1)教师寄语:一个人只有有了坚强的意志,才能创造惊人的成绩学习目标:1、进一步掌握推理证明的方法,发展演绎推理能力;2、了解勾股定理及其逆定理的证明方法;3、结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立。学习过程:一、前置准备1、说出你知道的勾股数2、勾股定理的内容是:_;它的条件是:_;结论是:_。二、自主学习:问题1利用三边关系判定直角三角形1任务:将勾股定理的条件和结论分别变成结论和条件,其内容是:下面试着将上述命题证明:已知在ABC中,AB2+AC2=BC2求证:ABC是直角三角形。2分析:如何证明一个三角形是直角三角形,必须说明该三角形中有一个角是直角,教材采用作一个直角三角形的办法,目的是什么?3在教师引导下完成证明4得出定理:如果三角形两边的_等于_,那么这个三角形是直角三角形。5讨论:在叙述这个定理时“两边”能否说成“两直角边”,“第三边”能否说成“斜边”?为什么?三、合作共建:问题2:学习互逆命题的概念,会找一个命题的逆命题1任务:观察勾股定理及上述定理,它们的条件和结论之间有怎样的关系?然后观察下列每组命题,是否也在类似关系(1)如果两个角是对顶角,那么它们相等。如果两个角相等,那么它们 是对顶角。(2)如果小明患了肺炎,那么他一定会发烧。 如果小明发烧,那么他一定患了肺炎。(3)三角形中相等的边所对的角相等。 三角形中相等的角所对的边相等。(要让学生说出两个命题条件和结论的关系) 2总结:像上述每组命题我们称为互逆命题,即一个命的条件和结论分别是另一个命题的_和_。3思考:阅读课本P17“想一想”,回答下列问题:一个命题是真命题,那么它的逆命题也一定是真命题吗? 什么是互逆定理?是否任何命题都有逆命题?是否任何定理都有逆定理 思考我们学过哪些互逆定理?四、归纳总结:1、勾股定理和逆定理的内容分别是什么? 2、什么是互逆定理,什么是互逆命题?五、当堂训练:1、判断A:每个命题都有逆命题,每个定理也都有逆定理。( )B:命题正确时其逆命题也正确。( )C:直角三角形两边分别是3,4,则第三边为5。( )2、下列长度的三条线段能构成直角三角形的是( )8、15、17 4、5、6、 7.5、4、8.5 24、25、7 5、8、10 A: B: C: D:学习笔记:课下训练:1、以下命题的逆命题属于假命题的是( )A:两底角相等的两个三角形是等腰三角形。B:全等三角形的对应角相等。C:两直线平行,内对角相等。D:直角三角形两锐角互等。2、命题:等腰三角形两腰上的高相等的逆命题是_3、若一个直角两直角边之比为3:4,斜边长20CM,则两直角边为( , )4、已知直角三角形两直角边长分别为6和8,则斜边长为_,斜边上的高为_。5、写出下列命题的逆命题,并判断每对命题的真假:A:五边形是多边形。B两直线平行,同位角相等。:C:如果两个角是对顶角,那么它们相等。D:如果AB=0,那么A=0,B=0。6、公园中景点A、B间相距50M,景点A、C间相距40M,景点B、C间相距30M,由这三个景点构成的三角形一定是直角三角形吗?为什么?7、台风过后,某小学旗杆在B处断裂,旗杆顶A落在离旗杆底部C点8M处,已知旗杆原长16M,则旗杆在距底部几米处断裂。8、小明将长2.5M的梯子斜靠在竖直的墙上,这时梯子底端B到墙根C的距离是0.7M,如果梯子的顶端垂直下滑0.4M,那么梯子的底端B将向外移动多少米。中考真题:用四个全等的直角三角形拼成了一个如图所示的图形,其中a表示较短,直角三角形,b表示较长的直角边,c表示斜边,你能用这个图形证明勾股定理吗?1.5直角三角形(2)教师寄语:明天的成功取决于今天的努力学习目标: 1、了解直角三角形全等的判定定理(HL),发展演绎推理能力;2、采用动手动脑相结合的方式,进一步学习严密科学的证明方法;3、通过推理、论证的训练,养成严谨的科学态度,不懈的探究精神和良好的说理方法。学习过程:一、前置准备1、直角三角形的勾股定理及勾股定理的逆定理;2、命题与逆命题,定理与逆定理的关系。二、自主学习:问题1:判定直角三角形全等1任务:直角三角形全等的判定方法有哪些2思考:两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一边所对的角是直角呢?请证明你认为正确的结论(根据学生的猜测,教师可以通过画图实际分析说明命题1是不成立的但是如果其中一边所对的角是直角,那么根据勾股定理可以知道,第三边也是相等的,这样就符合“三边对应相等,两个三角形全等”)总结:直角三角形全等判定方法一共有几种(SSS,SAS,ASA,AAS,HL)问题2:作已知角的平分线(1)你能用三角尺作已知角的平分线吗?不妨动手做一做。(如果学生不会做,教师可以引导学生做,但是一定要让学生说出这种做法的理论根据是什么)(2)请说明这种做法的正确性三、合作共建:问题3:添加适当条件,判定三角形全等(学生无论添加什么条件,教师都不要武断的肯定与否定,要让学生说出他这样做的理由)如图已知ACB=BDA=90,要使ACBBDA,还需要什么条件?把它们分别写出来。四、归纳总结:1、证明全等的判定定理有哪些? 2、如何用三角尺做已知角的平分线?五、例题解析:D是ABC的BC边上的中点,DEAC,DFAB,垂足分别为E、F,且DE=DF,求证BF=CE 解析本题解决的关键是利用“HL”证明BFDCED六、当堂训练:1、下列各选项中的两个直角三角形不一定全等的是( )A:两条直角边对应相等的两个直角三角形。B:两条锐角边对应相等的两个直角三角形。C:斜边和一条直角边对应相等的两个直角三角形。D:有一个锐角及这个锐角的对边对应相等的两个直角三角形全等。2、下列长度的三条线段能构成直角三角形的是( )8、15、17 4、5、6、 7.5、4、8.5 24、25、7 5、8、10 A: B: C: D:3、下列命题中,假命题是( )A:三个角的度数之比为1:3:4的三角形是直角三角形。B:三个角的度数之比为1:3:2的三角形是直角三角形。C:三边长之比为1:3:2的三角形是直角三角形。D:三边长之比为2:2:2的三角形是直角三角形。学习笔记:课下训练:1、下列说法正确的有( )(1)一个锐角及斜边对应相等的两个直角三角形全等。(2)一个锐角及一条直角边对应相等的两个直角三角形全等。(3)两个锐角对应等的两个直角三角形全等。(4)有两条边相等的两个直角三角形全等。(5)有斜边和条直角边对应相等的两个直角三角形全等。A:2个 B:3个 C:4个D:5个2、下列说法中错误的是( )A:直角三角形中,任意直角边上的中线小于斜边。B:等腰三角形斜边上的高等于斜边的一半。 C:直角三角形中每条直角边都小于斜边。D:等腰直角三角形一边长为1,则它的周长为1+23、以下列各组为边长,能组成直角三角形的是( )A: 8、15、17 B:4、5、6 C:5、8、10 D:8、39、404、命题:若AB,则A2B2的逆命题是_。5、AD是ABC的中线,ADC=45,把ADC沿AD对折,点C落在C的位置,则BC与BC之间的数量关系是_。6、四边形ABCD中,若AB=3,BC=4,CD=12,AD=13,且ABBC,求四边形ABCD的面积_。中考真题:如图,铁路上A、B两点,(视为直线上两点)相距25KM。C、D为两村庄(视为两个点),DAAB于A,CBAB于B,已知DA=15KM,CB=10KM,现在要在铁路AB上建一个土特产收购站E,使C、D两村到E站的距离相等,则E站应建在距A站多远的地方?1.6线段的垂直平分线(1)教师寄语:纸上终觉浅,绝知需躬行学习目标:1、经历探索、猜想、证明”的过程,进一步发展推理证明意识和能力。2、能够证明线段垂直平分线的性质定理、判定定理。3、能够用尺规作已知线段的垂直平分线。学习过程:一、前置准备:1、什么是线段的垂直平分线?2、如何画线段的垂直平分线呢?二、自主学习:问题1:证明线段垂直平分线的性质1任务:根据“线段的垂直平分线上的点到这条线段的两个端点的距离相等”这个命题分清条件和结论,画出图形,标上字母,用符号写出已知和求证。2看书对照自己写的是否准确3证明两线段相等,一般采用什么思路4请你完成证明过程四、 合作共建问题2:证明线段垂直平分线性质定理的逆命题1任务:写出“线段的垂直平分线上的点到这条线段的两个端点的距离相等”这一命题的逆命题?它是真命题吗?如果是,请证明,并与同伴交流。问题3:作已知线段的垂直平分线1任务:阅读P25做一做,然后用尺规作出右图已知线段AB的垂直平分线CD,并说明为什么CD是线段AB的垂直平分线? A B2反思:如何用尺规作图确定已知线段的中点?四、 归纳总结:1、我的收获?2、我不明白的问题?五、 例题解析:如图在ABC中,AD是BAC平分线,AD的垂直平分线分别交AB、BC延长线于F、E求证:(1)EAD=EDA ;(2)DFAC(3)EAC=B六、当堂训练:1、已知:线段AB及一点P,PA=PB,则点P在 上。2、已知:如图,BAC=1200,AB=AC,AC的垂直平分线交BC于D则ADC= 。3、ABC中,A=500,AB=AC,AB的垂直平分线交AC于D则DBC的度数 。4、ABC中,DE、FG分别是边AB、AC垂直平分线,则B BAE,C GAF ,若BAC=1260,则EAG= 。5、如图,ABC中,AB=AC=17,BC=16,DE垂直平分AB,则BCD的周长是 。6、有特大城市A及两个小城市B、C,这三个城市共建一个污水处理厂,使得该厂到B、C两城市的距离相等,且使A市到厂的管线最短,试确定污水处理厂的位置。学习笔记:课下训练:P27 习题1、2、3中考真题:已知:如图,DE是ABC的AB边的垂直平分线,分别交AB、BC于D、E,AE平分BAC,若B=300,求C的度数。1.7线段的垂直平分线(2)教师寄语:读书使人头脑充实,讨论使人明辩是非学习目标:1、能够证明线段的垂直平分线相交于一点这一定理。2、能够用尺规作已知线段的垂直平分线和已知底边及底边上的高作等腰三角形。学习过程:一、前置准备:问题1:回顾线段垂直平分线的性质(结合以下几个题目)1、等腰三角形的顶点一定在 上。2、在ABC中,AB、AC的垂直平分线相交于点P,则PA、PB、PC的大小关系是 。3、在ABC中,AB=AC, B=580,AB的垂直平分线交AC于N,则NBC= . 4已知线段AB,请你用尺规作出它的垂直平分线。 A B二、自主学习:问题2:三角形的三边的垂直平分线有什么特点1任务:思考三角形的三边的垂直平分线是否相交于一点,这一点到三个顶点的距离是否相等?2、剪一个三角形纸片,通过折叠观察一下,并与同桌交流。3用直尺和圆规实际做一做三边的垂直平分线,你发现了什么特点?4你能说明为什么吗5完成你的证明过程6归纳定理:三角形三条边的垂直平分线相交于 ,这一点到三个顶点的距离 。三、 合作共建;问题3根据适当条件作三角形任务1、请同学们看P29“议一议”,并回答所提出的两个问题。任务2、完成P29“做一做”,并与同伴交流。思考:等腰三角形的高是不是底边的垂直平分线 完成作图并写出作法 四、 归纳总结:1、我的收获?2、我不明白的问题?五、 例题解析:(1) 如图,在ABC中,A=400,O是AB、AC的垂直平分线的交点,求OCB的度数;(2) 如果将(1)中的的A度数改为700,其余的条件不变,再求OCB的度数;(3) 如果将(1)中的的A度数改为锐角a,其余的条件不变,再求OCB的度数。你发现了什么规律?请证明;(4) 如果将(1)中的的A度数改为钝角a,其余的条件不变,是否还存在同样的规律?你又发现了什么?六、当堂训练:1、在三角形内部,有一点P到三角形三个顶点的距离相等,则点P一定是( )A、三角形三条角平分线的交点;B、三角形三条垂直平分线的交点;C、三角形三条中线的交点;D、三角形三条高的交点。2、已知ABC的三边的垂直平分线交点在ABC的边上,则ABC的形状为( )A、锐角三角形;B、直角三角形;C、钝角三角形;D、不能确定3、等腰 RtABC中,AB=AC,BC=a,其斜边上的中线与一腰的垂直平分线交于点O,则点O到三角形三个顶点的距离是 。4、已知线段a、b,求作以a为底,以b为高的等腰三角形。 a b 学习笔记:课下训练:P30 习题1、2中考真题:已知:如图,RtABC中,ACB=900, BAC=600,DE垂直平分BC,垂足为D,交AB于点E,点F在DE的延长线上,且AF=CE,试探究图中相等的线段。1.8角平分线(1)教师寄语:成功的欢乐是一种巨大的学习动力学习目标: 1、通过学习角平分线定理及逆定理的过程,掌握该定理及逆定理,并运用之进行证明、计算、作图,以及掌握该定理在三角形中的应用;2、通过探索与证明,进一步发展推理意识及能力;3、证明是严密推理的方法,并培养自身的逆向思维能力。学习过程:一、前置准备问题1:角平分线的定义:_二、自主学习:问题2:还记得角平分线上的点有什么性质吗?1你还记得是怎样得到的这一条性质吗?2你能证明它吗?请你完成证明过程3定理归纳:,并说出这个定理的题设和结论问题3:你能写出这个定理的逆命题吗?它是真命题吗?如果是,请你证明它?(1) 逆命题:(2) 题设:结论(3) 画图、写出已知、求证并完成证明(4)定理归纳:三、合作共建:(做一做)用尺规怎样做已知角的平分线呢?并对自己的做法加以证明。四、归纳总结:1、角平分线的性质及判定的内容是什么? 2、如何用尺规作已知角的平分线?五、例题解析:如图,已知AD为ABC的角平分线,B=90,DFAC,垂足为F,DE=DC,求证BE=CF 解析要证BE=CF,只需证ADEFDC六、当堂训练:1、如图在ABC中AQ=PQ,PR=PS,PRAB于R,PSAC于S,则三个结论:AS=AR,QPAR,BRPQSP中( )A全部正确 B:仅和正确 C:仅正确 D:仅和正确。2、在ABC中C=90,A的平分线交BC于D,BC=CM, BD:DC:=4:3,则点D到AB的距离为_。3、在RTABC中,C=90,BD平分ABC交AC于D,DE是是斜边AB的垂直平分线,且DE=1CM,则AC=_.学习笔记:课下训练:1、OM平分BOA,P是OM上的任意一点,PDOA,PEOB,垂足分别为D、E,下列结论中错误的是( )A:PD=PE B:OD=OE C:DPO=EPO D:PD=OD3、 如图所示,AD平分BAC,DEAB,垂足为E,DFAC,垂足为F,则下列结论不正确的是( )A:AEGAFG B:AEDAFD C:DEGDFG D:BDECDF3、ABC中, ABC、ACB的平分线交于点O,连结AO,若OBC=25,OCB=30,则OAC=_4、与相交的两直线距离相等的点在( )A:一条直线上 B:一条射线上 C:两条互相垂直的直线上 D:以上都不对5、AOB的平分线上一点M,M到OA的距离为2CM,则M到OB的距离为_。6、在RTABC中,C=90,AD是BAC的平分线,若BC=16,BD=10,则D到AB的距离是_。7、如图在两条交叉的公路L1与L2之间有两家工厂A、B,现在要修一个货物中转站,使它到两条公路的距离相等,以及到两个工厂距离相等,你能帮助确定中转站的地址吗?请试试。中考真题:如图,梯形ABCD,ABCD,AD=DC=CB,AD、BC的延长线相交于G,CEAG于E,CFAB于F,(1)请写出图中4组相等的线段(已知的相等线段除外)(2)选择(1)中你所写的一组相等的线段,说说它们相等的理由。1.9角平分线(2)教师寄语:一份耕耘,一份收获学习目标:1、能够证明三角形的三条角平分线相交于一点这一定理。2、进一步发展学生的推理证明意识和能力。学习过程:一、 前置准备:问题1:三角形角平分线性质定理和判定定理的内容是什么?作用呢?二、 自主学习:问题2:三角形三条角平分线的特点是什么1学习任务:说明三角形三条角平分线的特点如图:设ABC的角平分线BM、CN交于P,求证:P点在BAC的平分线上2归纳定理:三角形的三条角平分线交于 点,并且这一点到三条边的距离 。3知识引申:三角形的三条角平分线交于一点,若设这一点到其中一边的距离为m,三边长分别为a、b、c,则三角形的面积S= 。4对应练习:1、已知:ABC中,BP、CP分别是ABC和ACB的角平分线,且交于P,若P到边AB的距离为3cm,ABC的周长为18cm,则ABC的面积为 。2、到三角形三边距离相等的点是( )A、三条中线的交点;B、三条高的交点;C、三条角平分线的交点;D、不能确定三、合作共建;问题3定理应用例:ABC中,AC=BC, C=900,AD是ABC的角平分线,DEAB于E。(1) 已知:CD=4cm,求AC长(2) 求证:AB=AC+CD 证明两条线段的和等于第三条线段的方法是:_四、归纳总结:1、我的收获?2、我不明白的问题?五、当堂训练:1、到一个角的两边距离相等的点在 。2、ABC中,C=900, A的平分线交BC于D,BC=21cm,BD:DC=4:3,则D到AB的距离为 .3、RtABC中,AB=AC,BD平分ABC,DEBC于E,AB=8cm,则DE+DC= cm。4、ABC中,ABC和BCA的平分线交于O,则BAO和CAO的大小关系为 。5 、RtABC中,C=900,BD平分ABC,CD=n,AB=m,则ABD的面积是 。6、已知:OP是MON内的一条射线,ACOM,ADON,BEOM,BFON,垂足分别为C、D、E、F,且AC=AD求证:BE=BF学习笔记:课下训练:P37 习题1、2、3中考真题:三条公路围成了一个三角形区域,今要在这个三角形区域内建一果品批发市场到这三条公路的距离相等,试找出批发市场的位置。 3.1平行四边形(1)教师寄语:人若有志,万事可成学习目标:1、掌握平行四边形的性质定理及等腰梯形的性质定理及判定定理。2、进一步发展逻辑推理能力,能用一至两种推理方法解决问题.3、培养严谨扎实的治学态度和勇于探索的科学精神。学习过程:一、前置准备:问题1:回顾平行四边形和等腰梯形的定义1、什么是平行四边形?2、什么是等腰梯形?二、自主学习:问题2证明平行四边形的所有性质:1任务:说出平行四边形的所有性质并进行证明(1)补充完整性质定理,并试着予以证明。平行四边形的对边_。已知:求证:证明:平行四边形的对角有怎样的大小关系?如何证明?它们的对角线有什么特点呢?你能证明它吗?(2)由此我们得到平行四边形的性质: - _2说明:对于每一个性质定理的证明,教师最好在学案上画好图形,给学生提供最好的学习材料,防止学生浪费时间。问题3:证明等腰梯形的性质(1)等腰梯形在同一底上的两个底角相等。已知:求证:证明:(2)等腰梯形的对角线有怎样的大小关系?如何证明?由此我们得到等腰梯形的性质是:_问题4:研究等腰梯形的判定方法1说出等腰梯形性质定理的逆命题,这个命题成立吗?你能证明它吗?2你还有什么办法说明一个梯形是等腰梯形?这个问题可以课下讨论三、 合作共建;议一议:证明:夹在两条平行线间的平行线段相等。四、 归纳总结: 1、我的收获?2、我不明白的问题?五、例题解析:如图,在ABC中,BD平分ABC ,DE/BC,EF/AC,试说明线段BE与CF的关系,并给出推理过程。六、当堂训练:1、平行四边形ABCD中,如果A=550,那么C的度数是( )。A. 450 B. 550 C. 1250 D. 14502.如图:已知L1L2, ABCD, CEL2与点E,FGL2与点G,则下列说法中错误的是( )(A)、AB=CD; (B)、CE=FG; (C)、A、B两点简的距离就是线段AB的长度;(D)L1与L2之间的距离是线段CD的长度。3、等腰ABC的腰为8cm,过底边BC上任一点D作两腰的平行线分别交两腰与E、F,则四边形AEDF的周长为 cm.学习笔记:课下训练:等腰梯形的上底、下底和腰分别为4cm、10cm、5cm,则梯形的高为 cm,对角线为 cm在平行四边形ABCD中,对角线AC、BD相交与点O,下列式子中一定成立的是( )(A). ACBD (B).OA=OC (C). AC=BD (D).AO=OD 3.在等腰梯形ABCD中,ADBC,ABAD,对角线AC、BD相交与点O,如下四个结论:梯形ABCD是轴对称图形;DAC=DCA;AOBDOCAODCOB请把其中正确结论的序号填在横线上 。4已知,在平行四边形ABCD中,2AB=BC,CAAB, B= ,CAD= .5. 平行四边形两条邻边分别是20 cm和16 cm,若两条长边之间的距离是8 cm,则两条短边之间的距离是 cm。6若等腰梯形较长的底等于对角线,较短的底等于高,则较短的底和较长的底的长的长度之比是( )(A). 1:2 (B).2:3 (C).4:1 (D).3:57如图,EF分别是平行四边形ABCD的AD、BC边上的点,且AE=CF,求证ABECDF中考真题:已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF,求证: (1)ADFCBE(2)EBDF3.2平行四边形(2)教师寄语:命运是可以被改写的,但是需要付出艰辛的代价学习目标:1、能证明平行四边形的判定定理及其它相关结论。2、经历探索、猜想、证明”的过程,进一步发展推理证明意识和能力。3、体会在证明过程中所运用的归纳、类比、转化等数学思想。学习过程:一、前置准备:1、平行四边形的性质定理的内容是什么?2、你学过那些平行四边形的判定方法?二、自主学习问题1:怎样说明一个四边形是平行四边形1任务:补充完整判定定理,并试着予以证明。两组对边分别_四边形是平行四边形.已知:求证:证明:2应用:已知四边形ABCD中,AB=5,BC=7,CD=5,当AD=_时,该四边形是平行三边形,判定的依据是_.三、 合作共建;问题2:议一议:一组对边平行且相等的四边形是平行四边形吗?如果是,请证明它,并将其归纳成判定定理:_问题3:完成做一做证明:图中的四边形MNOP是平行四边形(1)分析:四边形MNOP的四条边都已经告诉,但是都不具体,你能根据图形的特点求出x吗(2)请你列出求x的方程(3)你是用什么方法判断的这个四边形是平行四边形问题4:.证明:对角线互相平分的四边形是平行四边形(1)这个命题的题设是什么,结论是什么?(2)请你根据题意画出图形,写出已知和求证(3)利用什么办法说明结论的正确?问题5:证明:两组对角分别相等的四边形是平行四边形.(1)这个命题的题设是什么,结论是什么?(2)请你根据题意画出图形,写出已知和求证(3)利用什么办法说明结论的正确?四、 归纳总结:判断四边形是平行四边形的定理有哪些?五、例题解析:四边形ABCD是平行四边形,DE和BF分别是ADC和CBA的角平分线。求证:四边形BEDF是平行四边形六、当堂训练:1、如图,下面不能判定四边形ABCD是平行四边形的是( )A.ABCD,AB=CD B.AO=CO,BO=DOC. ABCD,AD=BC D.AB/CD,AD/BC2.如图:E和F分别是平行四边形ABCD的边BC与DA的三分之一点,则四边形AECF是_。3.在四边形ABCD中,给出下列判断(1) ABCD,(2)AD=BC,(3)A=C,以其中两个作为题设,另一个作为结论,用如果,那么的形式,写出一个正确的命题:学习笔记:课下训练:满足条件的四边形是平行四边形一组对边平行,一组邻角互补;一组对边平行,一组对角相等一组对角相等,一组邻角相等;一组对边平行,另一组对边平行下列给出的四边形ABCD中,A, B, C, D的度数之比,其中能判定ABCD为平行四边形的是( )A.1:2:3:4 B.2:3:2:3 C.2:2:3:3 D.1;2;2;33.BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是_.4.形状和大小完全相同的两个三角形最多可以拼成不同的平行四边形的个数为( )A.1 B.3 C.6 D.95.四边形ABCD中,AC与BD相交于点O,AB/DC,AO=CO.求证:四边形ABCD是平行四边形6.在平行四边形ABCD中,E、F分别是AB、CD的中点。求证:(1)AFDCEB(2)四边形AECF是平行四边形7.如图,在四边形ABCD中,AB/CD,AD/BC,P、Q分别为AB、CD上的点,且AP=CQ 求证:PD=QB8如图,在平行四边形ABCD中,E、F是对角线BD上的三等分点。求证:四边形AECF是平行四边形中考真题:如图:四边形ABCD是平行四边形,AF=CE,AF、CE分别为BAD、BCD的角平分线.求证:四边形BEDF是平行四边形3.3平行四边形(3)教师寄语:积极主动的习惯代表着立即采取行动,从自我做起,从现在做起。学习目标:1、会推导三角形中位线定理并会运用其定理进行计算或证明。2、培养严谨扎实的治学态度和勇于探索的数学精神。学习过程:一、前置准备:1、平行四边形的性质定理和判定定理分别是什么?2、如图:E、F 分别是平行四边形ABCD的边BC于DA的中点,则四边形AECF是 形。 二、自主学习:问题1:学习三角形的中位线的定义1任务:你能将任意一个三角形分成四个全等的三角形吗?(1)、请同学们阅读教材P80,看小明的做法对吗?(2)你能设法验证一下吗?2、说明什么是三角形的中位线三、合作共建;问题2三角形中位线的性质1、画三角形的一条中位线,量一下这条中位线与第三边的长度,看它们之间有什么关系?2、猜想三角形的中位线与第三边之间的关系?能证明你的猜想吗?与同伴交流。3在ABC中,AD是BC边上的中线,E、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论