全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于圆锥曲线的中点弦问题的探讨直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题;(2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。一、求中点弦所在直线方程问题例1、过椭圆内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程。解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:又设直线与椭圆的交点为A(),B(),则是方程的两个根,于是,又M为AB的中点,所以,解得,故所求直线方程为。解法二:设直线与椭圆的交点为A(),B(),M(2,1)为AB的中点,所以,又A、B两点在椭圆上,则,两式相减得,所以,即,故所求直线方程为。解法三:设所求直线与椭圆的一个交点为A(),由于中点为M(2,1),则另一个交点为B(4-),因为A、B两点在椭圆上,所以有,两式相减得,由于过A、B的直线只有一条,故所求直线方程为。二、求弦中点的轨迹方程问题例2、过椭圆上一点P(-8,0)作直线交椭圆于Q点,求PQ中点的轨迹方程。解法一:设弦PQ中点M(),弦端点P(),Q(),则有,两式相减得,又因为,所以,所以,而,故。化简可得 ()。解法二:设弦中点M(),Q(),由,可得,又因为Q在椭圆上,所以,即,所以PQ中点M的轨迹方程为 ()。三、弦中点的坐标问题例3、求直线被抛物线截得线段的中点坐标。解:解法一:设直线与抛物线交于, ,其中点,由题意得,消去y得,即,所以,即中点坐标为。解法二:设直线与抛物线交于, ,其中点,由题意得,两式相减得,所以,所以,即,即中点坐标为。上面我们给出了解决直线与圆锥曲线相交所得弦中点问题的一些基本解法。下面我们看一个结论引理 设A、B是二次曲线C:上的两点,P为弦AB的中点,则。设A、B则(1) (2)得 即。(说明:当时,上面的结论就是过二次曲线C上的点P的切线斜率公式,即) 推论1 设圆的弦AB的中点为P(,则。(假设点P在圆上时,则过点P的切线斜率为) 推论2 设椭圆的弦AB的中点为P(,则。(注:对ab也成立。假设点P在椭圆上,则过点P的切线斜率为)推论3 设双曲线的弦AB的中点为P(则。(假设点P在双曲线上,则过P点的切线斜率为)推论4 设抛物线的弦AB的中点为P(则。(假设点P在抛物线上,则过点P的切线斜率为我们可以直接应用上面这些结论解决有关问题,下面举例说明。例1、求椭圆斜率为3的弦的中点轨迹方程。解:设P(x,y)是所求轨迹上的任一点,则有,故所示的轨迹方程为16x+75y=0 例2、已知椭圆A、B是椭圆上两点,线段AB的垂直平分线l与x轴相交于P,求证:。证明:设AB的中点为T,由题设可知AB与x轴不垂直, lAB l的方程为: 令y=0 得 例3、已知抛物线C:,直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服装企业成本控制开题报告
- 成本控制的国内外理论综述
- 合成氨毕业设计论文
- 试论马尔库塞-单向度的人-内涵及意义
- 供应商的生命周期管理
- 工程监理合同和信息管理(3篇)
- 工程合同文件名词解释(3篇)
- 浅谈初中生数学建模能力的培养
- 浅谈成本管理在企业管理中的意义论文
- 中文系毕业论文指导及答辩意见-论文格式-
- 2025年建行合规知识考试题库
- 静配中心无菌技术操作规范
- 2025年天津团员考试题库
- 博物馆安全生产工作总结
- 三级安全教育考试题及答案电气
- 即时零售平台对比拆解深度:谁将赢下“最后一公里”
- 2024年公务员多省联考《申论》题(天津行政执法卷)试题及答案解析
- GB/T 18669-2025船用锚链和系泊链钢
- DG-TJ08-2134-2024 建筑装饰工程石材应用技术标准
- 养老护理员全套培训课件
- 《房屋体检机构能力评价征求意见稿》
评论
0/150
提交评论