91反比例函数.doc_第1页
91反比例函数.doc_第2页
91反比例函数.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宝华中学八年级数学备课组集体备课教案9.1反比例函数教学目标:1、理解反比例函数的概念,会求比例系数。 2、感受反比例函数是刻画世界数量关系的一种有效模型,能够列出实际问题中的反比例函数关系.教学重点:理解反比例函数的概念。.教学难点:感受反比例函数是刻画世界数量关系的一种有效模型.教学过程:1、 情境创设:在速度v,时间t与路程s之间满足:(1)如果速度v一定时,路程s随时间t的增大而增大,路程s与时间t就成正比例关系。且对于时间t的每一个值,路程s都有唯一的一个值与它对应,它又是函数关系。因此,如果速度v一定时,路程s是时间t的正比例函数.(2)如果时间t一定时,那么路程s与速度v又是什么关系呢?(3)如果路程s一定时,那么速度v和时间t又是什么关系呢?反比例关系:如果两个量x、y满足(k为常数,k0),那么x、y就成反比例关系,是函数关系吗?2、 探索活动:活动一:汽车从南京出发开往上海(全程约为300km),全程所用的时间t(h)随速度v(km/h)的变化而变化.(1)你能用含有v的代数式表示t吗? (2)利用(1)中的关系式完成下表:v/(km/h)608090100120t/h 随着速度的变化,全程所用的时间发生怎样的变化?速度变大,时间减小;速度变小,时间增大。(3)速度v是时间t的函数吗?为什么?活动二:(1)利函数关系式表示下列问题中的两个变量之间的关系:一个面积为6400的长方形的长a(m)随宽b(m)的变化而变化; 函数关系式某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;函数关系式实数m与n的积为-200,m 随n的变化而变化; 函数关系式一名工人加工80个零件的时间y(h)随该工人每小时能加工零件个数x(个/小时)的变化而变化. 函数关系式 (2)交流:函数关系式:、具有什么共同特征? 定义: 一般地,形如(k为常数,k0)的函数称为反比例函数,其中x是自变量,y是函数,k是比例系数.反比例函数的自变量x的取值范围是不等于0的一切实数. 反比例函数的函数值y的取值范围是不等于0的一切实数.指出上述4个反比例函数的比例系数.例1、下列关系中的y是x的反比例函数吗?如果是,比例系数k是多少? (1);(2);(3);(4);(5) (6);(7)练习:课本78页 注:(k为常数,k0)可以写成(k为常数,k0).例2、 已知函数是反比例函数,求m的值。练习:已知函数是反比例函数,求a的值。(2) 思考:你还能举出反比例函数的实例吗?练习:课本78页 1 对于反比例函数,它还能表示什么其它的实际意义?3、 小结与思考小结(略)思考:反比例函数(k为常数,k0)的自变量x的取值范围为不等于0的实数。但在实际问题中,反比例函数的自变量取值范围往往受到限制,比如:(1)一名工人加工80个零件的时间y(h)随该工人每小时能加工零件个数x(个/小时)的变化而变化,函数关系式为。求该函数的自变量范围。(2)一个面积为6400的长方形的长a(m)随宽b(m)的变化而变化,函数关系式为。求该函数的自变量的范围。(长是大于宽的)4、 布置作业: 课本79页 习题9.1 1、2补充:1、若y与x成反比例,且x=-3时,y=7,则y与x的函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论