高二数学必修5数列通项公式的求法归纳(精).doc_第1页
高二数学必修5数列通项公式的求法归纳(精).doc_第2页
高二数学必修5数列通项公式的求法归纳(精).doc_第3页
高二数学必修5数列通项公式的求法归纳(精).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数列通项公式的求法编辑:张杰2011.12.15一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目例1等差数列是递增数列,前n项和为,且成等比数列,求数列的通项公式.解:设数列公差为成等比数列,即, 由得:, 】点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。二、公式法若已知数列的前项和与的关系,求数列的通项可用公式求解。例2已知数列的前项和满足求数列的通项公式。解:由当时,有,经验证也满足上式,所以点评:利用公式求解时,要注意对n分类讨论,但若能合写时一定要合并三、由递推式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。类型1 递推公式为解法:把原递推公式转化为,利用累加法(逐差相加法)求解。例3. 已知数列满足,求。解:由条件知:分别令,代入上式得个等式累加之,即所以 , 类型2 (1)递推公式为解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。例4. 已知数列满足,求。解:由条件知,分别令,代入上式得个等式累乘之,即又, 注:由和确定的递推数列的通项还可以如下求得:所以, ,依次向前代入,得,类型3递推式:解法:只需构造数列,消去带来的差异其中有多种不同形式为常数,即递推公式为(其中p,q均为常数,)。解法:转化为:,其中,再利用换元法转化为等比数列求解。例5. 已知数列中,求.解:设递推公式可以转化为即.故递推公式为,令,则,且.所以是以为首项,2为公比的等比数列,则, 所以.为一次多项式,即递推公式为例6设数列:,求.解:设,将代入递推式,得()则,又,故代入()得备注:本题也可由 ,()两式相减得转化为求之. 为的二次式,则可设;类型4 递推公式为(其中p,q均为常数,)。 (或,其中p,q, r均为常数)解法:该类型较类型3要复杂一些。一般地,要先在原递推公式两边同除以,得:引入辅助数列(其中),得:再应用类型3的方法解决。例7. 已知数列中,,,求。解:在两边乘以得:令,则,应用例7解法得:所以类型5 递推公式为(其中p,q均为常数)。解法:先把原递推公式转化为其中s,t满足,再应用前面类型3的方法求解。例8. 已知数列中,,,求。解:由可转化为即或这里不妨选用(当然也可选用,大家可以试一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论