标准差与标准误的区别.docx_第1页
标准差与标准误的区别.docx_第2页
标准差与标准误的区别.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

标准差与标准误的区别一、标准差(standard deviation,缩写SD或者S)在国家计量技术规范中,标准差的正式称是标准偏差,简称标准差,用符号表示。标准差的名称有10 余种,如总体标准差、母体标准差、均方根误差、均方根偏差、均方误差、均方差、单次测量标准差和理论标准差等。标准差的定义式为:如果用样本标准差s 的值作为总体标准差的估计值。样本标准差的计算公式为:二、标准误(标准误差,standard error,缩写 Sx 或S E ))在抽样试验(或重复的等精度测量) 中, 常用到样本平均数的标准差,亦称样本平均数的标准误或简称标准误( standard error of mean) 。因为样本标准差s 不能直接反映样本平均数x 与总体平均数究竟误差多少, 所以, 平均数的误差实质上是样本平均数与总体平均数之间的相对误。可推出样本平均数的标准误为,其估计值为,它反映了样本平均数的离散程度。标准误越小, 说明样本平均数与总体平均数越接近,否则,表明样本平均数比较离散。标准误,衡量的是我们在用样本统计量去推断相应的总体参数(常见如均值、方差等)的时候,一种估计的精度。样本统计量本身就是随机变量,每一次抽样,都可以根据抽出的样本情况计算出一个不同的样本统计量值。理论上来讲,从既定的总体中按照既定的样本规模n,穷尽所有可能抽出的样本(不妨假设为NN),根据这些样本可以计算出NN个样本统计量值,把这些统计量值分组绘成直方图(X轴为分组的统计量数值,Y轴为落在某一分组区间内的频率),则这个直方图就反应了样本统计量的分布情况(即抽样分布)。既然是分布,当然就有均值和方差。如果所有可能的样本统计量值的平均值就是总体均值,这就是无偏估计。如果所有可能的样本统计量值的方差在所有用于估计总体参数的统计量里最小,这就是有效估计。因此,抽样分布的标准差(也就是标准误)越小,则用样本统计量去估计总体参数时,精度就越高。所以,你明白为什么叫标准误(standard error)了。一般意义上讲,standard error反映的是用样本统计量去估计总体参数的时候,可能发生的平均“差错”。需要注意的是,标准误差不是测量值的实际误差,也不是误差范围,它只是对一组测量数据可靠性的估计。标准误差小,测量的可靠性大一些,反之,测量就不大可靠。进一步的分析表明,根据偶然误差的高斯理论,当一组测量值的标准误差为时,则其中的任何一个测量值的误差Ei有68.3%的可能性是在(-,+)区间内。世界上多数国家的物理实验和正式的科学实验报告都是用标准误差评价数据的,现在稍好一些的计算器都有计算标准误差的功能,因此,了解标准误差是必要的。三、区别标准差 SD或者S说明的是观察值围绕均数分布的离散程度。标准误( Sx 或S E ) ,是样本均数的抽样误差。标准差(standard deviation)衡量的是样本值对样本平均值的离散程度,反应个体间变异的大小,是量度数据精密度的指标标准差计算的是一组数据偏离其均值的波动幅度,不管这组数是总体数据还是样本数据。标准误(standard error)衡量的是样本平均值对总体平均值的离散程度,反映抽样误差的大小,是量度结果精密度的指标。它们与样本含量的关系不同:当样本含量 n 足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0 .联系:标准差,标准误均为变异指标,当样本含量不变时,标准误与标准差成正比.最后总结:标准差还是标准误,注意看其英文原意,就可以把握个八九不离十了。本质上二者是同一个东西(都是标准差),但前者反映的是一种偏离程度,后者反映的是一种“差错”,即用样本统计量去估计总体参数的时候,对其“差错”大小(也即估计精度)的衡量。用途不同;标准差与均数结合估计参考值范围,计算变异系数,计算标准误等.标准误用于估计参数的可信区间,进行假设检验等.标准差与标准误的意义、作用和使用范围均不同。标准差(亦称单数标准差)一般用s表示,是表示个体间变异大小的指标,反映了整个样本对样本平均数的离散程度,是数据精密度的衡量指标;而标准误一般用表示,反映样本平均数对总体平均数的变异程度,从而反映抽样误差的大小,是量度结果精密度的指标。随着样本数(或测量次数)n的增大,标准差趋向某个稳定值,即样本标准差s越接近总体标准差,而标准误则随着样本数(或测量次数)n的增大逐渐减小,即样本平均数越接近总体平均数;故在实验中也经常采用适当增加样本数(或测量次数)n减小的方法来减小实验误差,但样本数太大意义也不大。标准差是最常用的统计量,一般用于表示一组样本变量的分散程度;标准误一般用于统计推断中,主要包括假设检验和参数估计,如样本平均数的假设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论