




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题椭圆C:1(ab0)的离心率e,ab3()求椭圆C的方程;()如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2mk为定值如图,椭圆C:1(ab0)经过点P(1,),离心率e,直线l的方程为x4()求椭圆C的方程;()AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3问:是否存在常数,使得k1k2k3?若存在,求的值;若不存在,说明理由椭圆C:1(ab0)的左右焦点分别是F1,F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1()求椭圆C的方程;()点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;()在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k0,试证明为定值,并求出这个定值如图,已知双曲线C:y21(a0)的右焦点为F,点A,B分别在C的两条渐近线AFx轴,ABOB,BFOA(O为坐标原点)()求双曲线C的方程;()过C上一点P(x0,y0)(y00)的直线l:y0y1与直线AF相交于点M,与直线x相交于点N证明:当点P在C上移动时,恒为定值,并求此定值二、圆锥曲线中的最值问题在平面直角坐标系xOy中,椭圆C:1(ab0)的离心率为,直线yx被椭圆C截得的线段长为()求椭圆C的方程;()过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点)点D在椭圆C上,且ADAB,直线BD与x轴、y轴分别交于M,N两点(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数使得k1k2,并求出的值;(ii)求OMN面积的最大值已知抛物线C:y22px(p0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|FD|当点A的横坐标为3时,ADF为正三角形()求C的方程;()若直线l1l,且l1和C有且只有一个公共点E,()证明直线AE过定点,并求出定点坐标;()ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由如图,O为坐标原点,椭圆C1:1(ab0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:1的左、右焦点分别为F3,F4,离心率为e2,已知e1e2,且|F2F4|1()求C1、C2的方程;()过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值xOyBl1l2PDA如图,点P(0,1)是椭圆C1:1(ab0)的一个顶点,C1的长轴是圆C2:x2y24的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D()求椭圆C1的方程;()求ABD面积的最大值时直线l1的方程在平面直角坐标系xOy中,F是抛物线C:x22py(p0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为()求抛物线C的方程;()是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;()若点M的横坐标为,直线l:ykx与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当k2时,|AB|2|DE|2的最小值三、圆锥曲线与过定点(定直线)问题设椭圆E:1的焦点在x轴上()若椭圆E的焦距为1,求椭圆E的方程;()设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1PF1Q,证明:当a变化时,点P在某定直线上四、圆锥曲线与求参数在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为()求椭圆C的方程;()A,B为椭圆C上满足AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C与点P,设t,求实数t的值已知三点O(0,0),A(2,1),B(2,1),曲线C上任意一点M(x,y)满足|(+)2()求曲线C的方程;()动点Q(x0,y0)(2x02)在曲线C上,曲线C在点Q处的切线为l向:是否存在定点P(0,t)(t0),使得l与PA,PB都不相交,交点分别为D,E,且QAB与PDE的面积之比是常数?若存在,求t的值若不存在,说明理由五、存在性问题如图,已知椭圆1(ab0)过点(1,),离心率为,左、右焦点分别为F1、F2点P为直线l:xy2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点()求椭圆的标准方程;()设直线PF1、PF2的斜线分别为k1、k2证明:2;问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOAkOBkOCkOD0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由如图,椭圆C1:1(ab0)的离心率为,x轴被曲线C2:yx2b截得的线段长等于C1的长半轴长()求C1,C2的方程;()设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA,MB分别与C1相交于D,E(i)证明:MDME;(ii)记MAB,MDE的面积分别是S1,S2问:是否存在直线l,使得?请说明理由六、轨迹方程已知椭圆C:1(ab0)的两个焦点分别为F1(1,0),F2(1,0),且椭圆C经过点P(,)()求椭圆C的离心率;()设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程如图,抛物线C1:x24y,C2:x22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省宜昌市长阳县2026届化学九年级第一学期期中统考试题含解析
- 2026届四川省成都市新都区英语九年级第一学期期末调研试题含解析
- 化验员读本培训
- 2026届内蒙古翁牛特旗九年级化学第一学期期末考试试题含解析
- 2026届山东省莱城区刘仲莹中学英语九年级第一学期期末达标测试试题含解析
- 山东省枣庄市第三十二中学2026届九上化学期中监测试题含解析
- 太湖县五校联考2025-2026学年八年级上学期开学道德与法治试题
- 山东省烟台某中学高三上学期调研考试数学-试题
- 黑龙江省大兴安岭松岭区古源中学2026届英语九年级第一学期期末经典试题含解析
- 2025年辅警考试面试题及答案
- 年产62万吨甲醇制烯烃(MTO)项目初步设计说明书
- 联通创新人才认证(解决方案)考试题库(附答案)
- 全成本管理探索与实践
- 电烙铁焊接技术培训
- ICU患者的早期活动
- 出纳课件 转账支票pptx
- TSZUAVIA 009.11-2019 多旋翼无人机系统实验室环境试验方法 第11部分:淋雨试验
- ps6000自动化系统用户操作及问题处理培训
- 商务礼仪情景剧剧本范文(通用5篇)
- 2021年东台市城市建设投资发展集团有限公司校园招聘笔试试题及答案解析
- 某县干部周转宿舍工程可行性研究报告
评论
0/150
提交评论