第五章相交线和平行线知识要点.doc_第1页
第五章相交线和平行线知识要点.doc_第2页
第五章相交线和平行线知识要点.doc_第3页
第五章相交线和平行线知识要点.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章 相交线和平行线1、相交线:两条直线有唯一 时,它们的位置关系就叫相交。两相交直线所构成的四个角中有 对对顶角,有 对邻补角。两个角是邻补角的条件有 ; ; 。性质有 ; ; 。若两个互为邻补角的角相等,则这两个角一定是 度。两个角是对顶角的条件有 ; 。性质有 。2、垂线:如果两条直线相交所构成的角中有一个角是 角,就叫这两条直线互相垂直,其中一条就是另一条的垂线。过一点(包括线上和线外两种情况)作已知直线的垂线 条。回忆并操作:如何过三角形(特别是钝角三角形)的顶点作对边的垂线。如图0,因为直线ABCD于O,(O叫 ),所以 = = = = 。反之,因为AOC= (或 或 或 ),所以ABCD。连接直线外一点与直线上各点的所有线段中, 最短,简称成为 。举例:跳远成绩的测量、从河流引水的水渠的挖掘等。3、三线八角:两条直线被第三条直线所截,必将构成八个角,其中两个角之间的位置关系分为三种情况:同位角、内错角、同旁内角。同位角成 形;内错角成 形,同旁内角成 形。每一种角之间必须要有平行线为前提才有相等或互补的数量关系,否则其数量关系并不成立。如找出图1中的三线八角,能否确定它们之间的相等或互补的数量关系?(不能) 4、平行线同一平面内,两条永不相交(即没有交点)的直线的位置关系叫互相平行,其中一条叫另一条的平行线。同一平面内,两条直线的位置关系只有 和 两种。经过直线外一点, 条直线与已知直线平行。-平行公理;如果两条直线都平行于第三条直线,那么这两条直线也 。-平行公理的推论如图2将识别用几何语言表达为:ac, , 。 平行线判断: ,两直线平行; ,两直线平行; ,两直线平行;平行线的性质:两直线平行, ;两直线平行, ;两直线平行, 。用几何语言表达为:如图3:ABCD, , , 。(分别写出一组即可)平行线之间的距离是同时 于两条平行线,并且夹在这两条平行线间的线段的 。这些线段是 且 的,所以有平行线中的一条上的两点与另一条上的所有点构成的三角形的面积都相等。要与两点之间的距离和点到线的距离区别开来。注意如图9的两种情况有多中方法得出结论。5、命题:是 一件事情的语句。命题由 和 构成。可以分成 和 两种类型。命题可以改成“如果那么”的形式,由此找出题设和结论。如:对顶角相等、等角的余角相等等。(1)如果 ,那么 (2)如果 ,那么 6、平移:是将一个图形不改变其形状、大小沿同一方向移动到一个新位置的图形变换。其性质有:对应点的连线 且 ;对应线段 且 ;对应角 ;会作图第六章 平面直角坐标系1、点的位置与坐标的关系:设点的坐标为M(x,y)坐 标点所在象限或坐标轴坐 标点所在象限或坐标轴横坐标x纵坐标y横坐标x纵坐标yx0y0第一象限x0y0x0y0X0y=0x=0y0x=0y=0x=0y0x0y=0x0y0注:第一、三象限角平分线上的点的横坐标和纵坐标 ,第二、四象限角平分线上的点的横坐标和纵坐标 。各象限角平分线上的点到 和 的距离相等。2、坐标平面内点的对称情况:设点的坐标为P(m,n),则(1)与P关于x轴对称的点的坐标是( , )即 同 反;(2)与P关于y轴对称的点的坐标是( , )即 反 同;(3)与P关于原点对称的点的坐标是( , )即 都反。3、坐标平面内点的平移情况:设点是M(x,y),其中a0,b0。M(x,y+b)沿y轴向上平移b个单位长度M(x-a,y) 沿x轴向左平移a个单位长度 M(x,y) 沿x轴向右平移a个单位长度 M(x+a,y)沿y轴向下平移b个单位长度M(x,y-b)注:一个图形的平移就是将它的各个顶点(或特殊点)按规则平移后再顺次连接而成图形。4、与坐标轴平行的直线上的点的坐标特点:与X轴平行的直线上的所有点的 坐标相同, 坐标不同;与Y轴平行的直线上的所有点的 相同, 不同。5、点M(x,y)到X轴的距离为 ;到Y轴的距离为 。6、坐标轴及与坐标轴平行的直线上两点之间的距离: X轴上或与X轴平行的直线上的这两点之间的距离就是两点的 坐标之差的绝对值;Y轴上或与Y轴平行的直线上的两点之间的距离就是这两点的 坐标之差的绝对值;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论