



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
冯诺依曼稳定性分析维基百科,自由的百科全书跳转到: 导航, 搜索 数值分析中, 冯诺依曼稳定性分析 (亦作傅立叶稳定性分析) 用于验证计算线性偏微分方程时使用特定有限差分法的数值稳定性1,该分析方法基于对数值误差的傅立叶分解。1947年英国研究人员 John Crank 和 Phyllis Nicolson 在文章中对该方法进行了简要介绍2, 尔后又出现在冯诺依曼合作的文章中 3 。 洛斯阿拉莫斯国家实验室对该方法进行了进一步发展。编辑 数值稳定性数值稳定性与数值误差密切相关。使用有限差分方法进行计算时,若任意时间步的误差不会导致其后计算结果的发散,则可称该有限差分法是数值稳定的。如果误差随着进一步计算降低最终消失,该算法被认为稳定;若误差在进计算中保持为常量,则认为该算法“中性稳定”。但如果误差随着进一步计算增长,结果发散,则数值方法不稳定。数值方法的稳定性可以通过冯诺依曼稳定性分析得到验证。稳定性一般不易分析,特别是针对非线性偏微分方程。冯诺依曼稳定性方法只适用于满足 LaxRichtmyer 条件 (Lax 等价定理) 的某些特殊差分法: 偏微分方程系统须线性,常系数,满足周期性边界条件,只有两个独立变量,差分法中最多含两层时间步4。 由于相对简单,人们常使用冯诺依曼稳定性分析代替其他更为详细的稳定性分析,用以估计差分方法中对容许步长的限制。编辑 方法描述冯诺依曼误差分析将误差分解为傅立叶级数。为了描述此过程,考虑一维热传导方程空间网格间隔为 L, 对网格作 FTCS (Forward-Time Central-Space,时间步前向欧拉法,空间步三点中心差分) 离散处理,其中 。 为离散网格上的数值解,用于近似此偏微分方程的精确解 u(x,t) 。定义舍入误差 。 其中 是离散方程 (1) 式的精确解, 为包含有限浮点精度的数值解。 因为精确解 满足离散方程, 误差 亦满足离散方程 5:此式将确定误差的递推关系。方程 (1) 和 (2) 中,误差和数值解随时间具有一致的变化趋势。对于含周期性边界条件的线性微分方程,间隔 L 上的空间部分误差可展开为傅立叶级数其中波数 , M = L / x。 通过假设误差幅度 Am 是时间的函数,可以给出误差和时间的关系。 不难知单步中,误差随时间指数增长,因此 (3) 式可以写作其中 a 为常量。由于误差所满足的差分方程是线性的(级数每一项的行为与整个级数一致),只估计一项的误差变化便足以估计整体趋势:为找出误差随时间步的变化, 将方程 (5) 式应用于离散后的误差表达式上再代入到 (2) 式中,求解方程后可得使用已知的指数三角关系式和 可以将方程 (6) 变作定义涨幅因子则误差有限的充要条件为 。 已知联立 (7) 和 (8) 两式,易得稳定性条件为即(10) 即为该算法的稳定性条件。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论