




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 原始 对偶算法 14721472马韶东 2 互补松弛定理 定理1设和分别是原问题和对偶问题的可行解 那么和都是最优解的充要条件是 对于所有j 下列关系成立 1 如果 就有 2 如果 就有 3 原始 对偶算法的基本思想 原始 对偶算法不同于原始的单纯形法 也不同于对偶算法 它的基思思想是 从对偶问题的一个可行解开始 同时计算原问题和对偶问题 试图求出原问题的满足互补松弛条件的可行解 当然 这样的可行解就是最优解 考虑原问题 4 3 1 它的对偶问题 4 3 2 其中是m n矩阵 4 设是对偶问题 4 3 2 的一个可行解 即满足在已知对偶问题的一个可行解的条件下 把对偶问题的约束划分为两组 定义下标集显然 当时 假如是对偶问题的最优解 当然 现在的不一定是最优解 根据互补松弛定理 时 5 下面用两阶段法求对偶问题的最优解 在的假设下解一阶段问题 4 3 4 其中是分量全为1的m维向量 y是由m个人工变量组成的m维列向量 我们称线性规划 4 3 4 为限定原始问题 这个问题必存在最优解 求解的结果必是最优值等于零或大于零 6 若问题 4 3 4 的最优值等于零 则y 0 设其最优解为再由假设可以得到根据互补松弛定理 它也是原问题 4 3 1 的最优解 7 若限定原始问题 4 3 4 的最优值大于零 则原问题 4 3 1 不存在使的可行解 同时也表明了不是对偶问题 4 3 2 的最优解 因此需要修改对偶问题的可行解 并构造新的原始限定问题 再进行求解 以此类推 直至得到原问题的最优解 或者得出原问题无可行解的结论 8 现在分析当原始限定问题的最优值大于零时怎样修改对偶问题的可行解 考虑限定原始问题 4 3 4 的对偶问题 4 3 5 设上述线性规划 4 3 5 的最优解是 可由求解限定原始问题的单纯形乘子结果得到 9 下面利用对偶问题 4 3 2 的可行解和线性规划 4 3 5 的最优解来构造对偶问题 4 3 2 的一个新的可行解 令其中 这时有 4 3 7 在下面的讨论中可以看到 只要适当选择的取值 就能使w为对偶问题 4 3 2 的可行解 10 分两种情形讨论 1 这时 是限定原始问题中的变量 由于是线性规划 4 3 5 的最优解 因此 根据Q的定义 的又知 0 因此 由式 4 3 7 可得 4 3 8 因此 w是对偶问题的可行解 11 2 这时 根据Q的定义 有 如果 则根据 4 3 7 式 有 如果 则令 4 3 9 12 将式 4 3 9 带入式 4 3 7 必有因此 按 4 3 7 式确定 值 必有 4 3 10 即用上述方法构造出的w是对偶问题的可行解 13 求出对偶问题可行解w后 修改集合Q 再解限定原始问题 由于限定原始问题中 对应基变量的判别数呵 把它代入 4 3 7 得到 因此这些变量的下标仍属于Q 在解限定原始问题时可从现行基开始继续迭代 此外 把 值代入 4 3 7 时 有这表明 由 4 3 9 知判别数 因此可作为进基变量 14 如果限定原始问题是非退化的 当原问题存在最优解时 经有限次迭代必收敛 当限定原始问题的最优值大于零时 可能遇到这样的情形 对于所有j 包括不属于Q的j 有 这时 由 4 3 7 知 任意 0 均有 即w是对偶问题的可行解 对偶问题目标函数值 对偶问题 15 其中是限定原始问题最优值 由于 0 可取任意大正数 对偶问题目标函数值在可行域上无上界 原问题无可行解 限定原始问题 16 总结一下大体思路如下图 初始可行解w 最优值 0 17 计算步骤 根据以上分析 原始 对偶算法计算步骤如下 1 给定对偶问题 4 3 2 的一个可行解w 使得对所有j 成立 2 构造原始限定问题 令求解问题 若 0 则停止迭代 得到最优解 否则 进行 3 限定原始问题 18 3 设上述问题达到最优时单纯形乘子 即问题4 3 5的最优解 v 若对所有j均成立 则停止计算 原问题无可行解 否则 进行步骤 4 4 令令 返回步骤 2 19 实际求解时我们运用表格形式进行迭代 初始表结构如下 变量xj中属于限定原始问题的 则用 在上方标注 解限定原始问题的进离基运算要在标 的列和y的列进行 20 限定原始问题达到最优时 若要修改对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 镇江市高等专科学校《中学语文教材分析与教学设计》2023-2024学年第二学期期末试卷
- 浙江电力职业技术学院《现代服务业管理》2023-2024学年第二学期期末试卷
- 广东东软学院《机械专业学位类别论文写作指导》2023-2024学年第二学期期末试卷
- 山西工程科技职业大学《材料成型设备及其自动化》2023-2024学年第二学期期末试卷
- 未婚生孩子报销流程
- gre考试基本流程介绍
- 2025关于租房合同的重要条款与注意事项
- 服装设计核心要素与创新实践
- 公路清包工合同范例
- 2025设备租赁合同解除协议
- DB31T 685-2019 养老机构设施与服务要求
- 2021年苏州资产管理有限公司招聘笔试试题及答案解析
- 北票市沙金沟金矿地质调查总结
- 广东旅游车队公司一览
- 模具加工3数控加工_图文.ppt课件
- 河南省确山县三里河治理工程
- 水利工程合同工程完工验收工程建设管理工作报告
- 基于PLC的温室大棚控制系统设计说明
- 涵洞孔径计算
- 测量未知电阻的方法
- 中国民主同盟入盟申请表
评论
0/150
提交评论