2006年全国中考数学压轴题全解全析.doc_第1页
2006年全国中考数学压轴题全解全析.doc_第2页
2006年全国中考数学压轴题全解全析.doc_第3页
2006年全国中考数学压轴题全解全析.doc_第4页
2006年全国中考数学压轴题全解全析.doc_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2006年全国中考数学压轴题全解全析21、(湖南郴州卷)已知抛物线经过及原点(1)求抛物线的解析式(2)过点作平行于轴的直线交轴于点,在抛物线对称轴右侧且位于直线下方的抛物线上,任取一点,过点作直线平行于轴交轴于点,交直线于点,直线与直线及两坐标轴围成矩形(如图)是否存在点,使得与相似?若存在,求出点的坐标;若不存在,请说明理由EAQBPCOyx(3)如果符合(2)中的点在轴的上方,连结,矩形内的四个三角形之间存在怎样的关系?为什么?解 (1)由已知可得:解之得,因而得,抛物线的解析式为:(2)存在设点的坐标为,则,要使,则有,即,解之得,当时,即为点,所以得要使,则有,即解之得,当时,即为点,当时,所以得故存在两个点使得与相似点的坐标为(3)在中,因为所以当点的坐标为时,所以因此,都是直角三角形又在中,因为所以即有所以,又因为,所以点评本题是一道涉及函数、相似、三角等知识的综合题,解决第3题的关键在于通过观察得出对结果的合理猜想在进行证明,难度应该不会很大。22、(湖南湘潭卷)已知:如图,抛物线的图象与轴分别交于两点,与轴交于点,经过原点及点,点是劣弧上一动点(点与不重合)(1)求抛物线的顶点的坐标;(2)求的面积;(3)连交于点,延长至,使,试探究当点运动到何处时,直线与相切,并请说明理由解 (1)抛物线的坐标为(说明:用公式求点的坐标亦可)(2)连;过为的直径而(3)当点运动到的中点时,直线与相切理由:在中,点是的中点,在中,为等边三角形又为直径,当为的中点时,为的切线点评本题将抛物线与圆放在同一坐标系中研究,因此数形结合的解题思想是不可缺少的,解第3小问时可以先自己作图来确定D点的位置。23、(湖南永州卷)如图,以为圆心的两个同心圆中,大圆的直径交小圆于两点,大圆的弦切小圆于点,过点作直线,垂足为,交大圆于两点(1)试判断线段与的大小关系,并说明理由(2)求证:(3)若是方程的两根(),求图中阴影部分图形的周长ABCDEONHMF解 (1)相等 连结,则,故 (2)由,得, 又由,得 (3)解方程得:, ,在中,在中,弧长, 阴影部分周长 点评本题是比较传统的几何型综合压轴题,涉及圆、相似、三角等几何重点知识。24、(湖南张家界卷)在平面直角坐标系内有两点,所在直线为,(1)求与的坐标(2)连结,求证:(3)求过,三点且对称轴平行于轴的抛物线解析式(4)在抛物线上是否存在一点(不与重合),使得,若存在,请求出点坐标,若不存在,请说明理由解 (1)以代入得:则有(2)(3)设抛物线的解析式为,以三点的坐标代入解析式得方程组:所以(4)假设存在点依题意有,得:当时,有即解得:当 时, 有,即解得:(舍去),存在满足条件的点,它的坐标为:点评此题综合性较强,4个小题的坡度设置较好,区分度也把握地很好,是道考查学生初中三年学习成果的好题,第4小题中不要忘了绝对值,否则会导致少解。BCPODQABPCODQA25、(吉林课改卷)如图,正方形的边长为,在对称中心处有一钉子动点,同时从点出发,点沿方向以每秒的速度运动,到点停止,点沿方向以每秒的速度运动,到点停止,两点用一条可伸缩的细橡皮筋联结,设秒后橡皮筋扫过的面积为(1)当时,求与之间的函数关系式;(2)当橡皮筋刚好触及钉子时,求值;(3)当时,求与之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时的变化范围;(4)当时,请在给出的直角坐标系中画出与之间的函数图象解 (1)当时,即 (2)当时,橡皮筋刚好触及钉子, (3)当时,即 作,为垂足当时,即 或(4)如图所示:点评本题是一道颇有创新的动态问题,主要考查函数和几何知识,读懂和领悟题意是关键,综观近几年的重考数学试题。这类题的出现频率呈上升趋势,应予以关注26(吉林长春课改卷)如图,正方形的顶点的坐标分别为,顶点在第一象限点从点出发,沿正方形按逆时针方向匀速运动,同时,点从点出发,沿轴正方向以相同速度运动当点到达点时,两点同时停止运动,设运动的时间为秒(1)求正方形的边长 (2)当点在边上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分(如图所示),求两点的运动速度 (3)求(2)中面积(平方单位)与时间(秒)的函数关系式及面积取最大值时点的坐标 (4)若点保持(2)中的速度不变,则点沿着边运动时,的大小随着时间的增大而增大;沿着边运动时,的大小随着时间的增大而减小当点沿着这两边运动时,使的点有个 (抛物线的顶点坐标是图图解 (1)作轴于,(2)由图可知,点从点运动到点用了10秒又两点的运动速度均为每秒1个单位(3)方法一:作轴于,则,即, 即,且,当时,有最大值此时,点的坐标为(8分)方法二:当时,设所求函数关系式为抛物线过点, ,且,当时,有最大值此时,点的坐标为 (4) 点评本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。27、(山东青岛课改卷 )如图,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC8cm,BC6cm,C90,EG4cm,EGF90,O 是EFG斜边上的中点如图,若整个EFG从图的位置出发,以1cm/s 的速度沿射线AB方向平移,在EFG 平移的同时,点P从EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,EFG也随之停止平移设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况)(1)当x为何值时,OPAC ?(2)求y与x 之间的函数关系式,并确定自变量x的取值范围(3)是否存在某一时刻,使四边形OAHP面积与ABC面积的比为1324?若存在,求出x的值;若不存在,说明理由(参考数据:1142 12996,1152 13225,1162 13456或4.42 19.36,4.52 20.25,4.62 21.16)解 (1)RtEFGRtABC ,FG3cm 当P为FG的中点时,OPEG ,EGAC ,OPAC x 31.5(s)当x为1.5s时,OPAC (2)在RtEFG 中,由勾股定理得:EF 5cmEGAH ,EFGAFH AH( x 5),FH(x5)过点O作ODFP ,垂足为 D 点O为EF中点,ODEG2cmFP3x ,S四边形OAHP SAFH SOFPAHFHODFP(x5)(x5)2(3x )x2x3 (0x3 (3)假设存在某一时刻x,使得四边形OAHP面积与ABC面积的比为1324则S四边形OAHPSABCx2x3686x285x2500解得 x1, x2 (舍去)0x3,当x(s)时,四边形OAHP面积与ABC面积的比为1324 点评本题是比较常规的动态几何压轴题,第1小题运用相似形的知识容易解决,第2小题同样是用相似三角形建立起函数解析式,要说的是本题中说明了要写出自变量x的取值范围,而很多试题往往不写,要记住自变量x的取值范围是函数解析式不可分离的一部分,无论命题者是否交待了都必须写,第3小题只要根据函数解析式列个方程就能解决。28、(江苏徐州卷)在平面直角坐标系中,已知矩形ABCD中,边,边,且AB、AD分别在x轴、y轴的正半轴上,点A与坐标原点重合将矩形折叠,使点A落在边DC上,设点是点A落在边DC上的对应点(图1)(1)当矩形ABCD沿直线折叠时(如图1),求点的坐标和b的值;(2)当矩形ABCD沿直线折叠时, 求点的坐标(用k表示);求出k和b之间的关系式; 如果我们把折痕所在的直线与矩形的位置分为如图2、3、4所示的三种情形,请你分别写出每种情形时k的取值范围(将答案直接填在每种情形下的横线上)(图4)(图2)(图3)k的取值范围是 ; k的取值范围是 ;k的取值范围是 ;解 (1)如图答5,设直线与OD交于点E,与OB交于点F,连结,则OE = b,OF = 2b,设点的坐标为(a,1)因为,所以,所以OFE所以,即,所以所以点的坐标为(,1)连结,则在Rt中,根据勾股定理有 , 即,解得 (2)如图答6,设直线与OD交于点E,与OB交于点F,连结,则OE = b,设点的坐标为(a,1)因为,所以,所以OFE所以,即,所以所以点的坐标为(,1)连结,在Rt中,因为,所以所以在图答6和图答7中求解参照给分(3)图132中:;图133中:;图134中: (图答5)(图答7)(图答6)点评这是一道有关折叠的问题,主要考查一次函数、四边形、相似形等知识,试题中贯穿了方程思想和数形结合的思想,请注意体会。29、(江西课改卷)问题背景 某课外学习小组在一次学习研讨中,得到如下两个命题: 如图1,在正三角形ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若BON = 60,则BM = CN. 如图2,在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若BON = 90,则BM = CN.然后运用类比的思想提出了如下的命题: 如图3,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若BON = 108,则BM = CN.任务要求 (1)请你从、三个命题中选择一个进行证明; (2)请你继续完成下面的探索: 如图4,在正n(n3)边形ABCDEF中,M、N分别是CD、DE上的点,BM与CN相交于点O,问当BON等于多少度时,结论BM = CN成立?(不要求证明) 如图5,在五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,当BON = 108时,请问结论BM = CN是否还成立?若成立,请给予证明;若不成立,请说明理由.(1)我选 .证明:解 (1)选命题证明:在图1中, BON = 60, CBM +BCN = 60. BCN +ACN = 60, CBM =ACN. 又 BC = CA, BCM =CAN = 60, BCM CAN. BM = CN. 选命题证明:在图2中, BON = 90, CBM +BCN = 90. BCN +DCN = 90, CBM =DCN. 又 BC = CD, BCM =CDN = 90, BCM CDN. BM = CN. 选命题证明:在图3中, BON = 108, CBM +BCN = 108 BCN +DCN = 108, CBM =DCN. 又 BC = CD, BCM =CDN = 108, BCM CDN. BM = CN. (2) 当BON = 时,结论BM = CN成立. BM = CN成立.证明:如图5,连结BD、CE.在BCD和CDE中, BC = CD,BCD =CDE = 108,CD = DE, BCD CDE. BD = CE,BDC =CED,DBC =ECD. OBC +OCB = 108,OCB +OCD = 108, MBC =NCD.又 DBC =ECD = 36, DBM =ECN. BDM ECN. 点评本题是一道非常典型的几何探究题,很好地体现了从一般到特殊的数学思想方法,引导学生渐渐地从易走到难,是新课标形势下的成熟压轴题。30、(辽宁卷)如图,已知,以点为圆心,以长为半径的圆交轴于另一点,过点作交于点,直线交轴于点(1)求证:直线是的切线;(2)求点的坐标及直线的解析式;xyABCOFE(3)有一个半径与的半径相等,且圆心在轴上运动的若与直线相交于两点,是否存在这样的点,使是直角三角形若存在,求出点的坐标;若不存在,请说明理由解 (1)证明:连结 又又是的切线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论