2017年宜昌市近五届中考数学几何压轴题(23题)汇编及答案.docx_第1页
2017年宜昌市近五届中考数学几何压轴题(23题)汇编及答案.docx_第2页
2017年宜昌市近五届中考数学几何压轴题(23题)汇编及答案.docx_第3页
2017年宜昌市近五届中考数学几何压轴题(23题)汇编及答案.docx_第4页
2017年宜昌市近五届中考数学几何压轴题(23题)汇编及答案.docx_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2017年宜昌市近五届中考数学几何压轴题(23题)汇编及答案(本题一般3小问,共11分)上传校勘:柯老师【2012/23】如图,在直角梯形ABCD中,ADBC,ABC=90点E为底AD上一点,将ABE沿直线BE折叠,点A落在梯形对角线BD上的G处,EG的延长线交直线BC于点F(1)点E可以是AD的中点吗?为什么?(2)求证:ABGBFE;(3)设AD=a,AB=b,BC=c 当四边形EFCD为平行四边形时,求a,b,c应满足的关系; 在的条件下,当b=2时,a的值是唯一的,求C的度数【2013/23】半径为2cm的O与边长为2cm的正方形ABCD在水平直线L的同侧,O与L相切于点F,DC在L上.(1)过点B作O的一条切线BE,E为切点.填空:如图1,当点A在O上时,EBA的度数是 ;如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC,AD与O的公共点,求扇形MON的面积的范围.【2014/23】在矩形ABCD中,=a,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把AHE沿直线HE翻折得到FHE(1)如图1,当DH=DA时,填空:HGA= 度;若EFHG,求AHE的度数,并求此时a的最小值;(2)如图3,AEH=60,EG=2BG,连接FG,交边FG,交边DC于点P,且FGAB,G为垂足,求a的值【2015/23】如图四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作O,交边DC于D,G两点,AD分别与EF,GF交于I,H两点。(1)求FDE的度数;(2)试判断四边形FACD的形状,并证明你的结论;(3)当G为线段DC的中点时,求证:FDFI;设AC2m,BD2n,求O的面积与菱形ABCD的面积之比。【2016/23】在ABC中,AB=6,AC=8,BC=10 . D是ABC内部或BC边上的一个动点(与B,C不重合). 以D为顶点作DEF,使DEFABC(相似比k1),EFBC. (1)求D的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH,如图1,连接GH,AD,当GHAD时,请判断四边形AGDH的形状,并证明;当四边形AGDH的面积最大时,过A作APEF于P,且AP=AD ,求k的值. (第23题图1) (第23题图2供参考用) (第23题图3供参考用)图1 图2 参考答案:【2012/23】解:(1)不是1分据题意得:AE=GE,EGB=EAB=90,RtEGD中,GEED,AEED,故,点E不可以是AD的中点;2分(注:大致说出意思即可;反证法叙述也可)(2)方法一:证明:ADBC,AEB=EBF,EABEGB,AEB=BEG,EBF=BEF,FE=FB,FEB为等腰三角形ABG+GBF=90,GBF+EFB=90,ABG=EFB,4分在等腰ABG和FEB中,BAG=(180ABG)2,FBE=(180EFB)2,BAG=FBE,5分ABGBFE,(注:证一对角对应等评2分,第二对角对应等评1分,该小问3分,若只证得FEB为等腰三角形,评1分)方法二:ABG=EFB(见方法一),4分证得两边对应成比例:,5分由此可得出结论(注:两边对应成比例,夹角等证得相似,若只证得FEB为等腰三角形,评1分)(3)方法一:四边形EFCD为平行四边形,EFDC,证明两个角相等,得ABDDCB,7分,即,a2+b2=ac;8分方法二:如图,过点D作DHBC,四边形EFCD为平行四边形EFDC,C=EFB,ABGBFE,EFB=GBA,C=ABG,DAB=DHC=90,ABDHCD,7分,a2+b2=ac;8分(注:或利用tanC=tanABD,对应评分)方法三:证明ABDGFB,则有,则有BF=,6分四边形EFCD为平行四边形,FC=ED=c,EDBC,EDGFBG,a2+b2=ac;8分方法一:解关于a的一元二次方程a2ac+22=0,得:a1=,a2=9分由题意,=0,即c216=0,c0,c=4,a=210分H为BC的中点,且ABHD为正方形,DH=HC,C=45;11分方法二:设关于a的一元二次方程a2ac+22=0两根为a1,a2,a1+a2=c0,a1a2=40,a10,a20,9分由题意,=0,即c216=0,c0,c=4,a=2,10分H为BC的中点,且ABHD为正方形,DH=HC,C=4511分【2013/23】解:(1)半径为2cm的与O边长为2cm的正方形ABCD在水平直线l的同侧,当点A在O上时,过点B作的一条切线BE,E为切点,OB=4,EO=2,OEB=90,EBA的度数是:30;如图2,直线l与O相切于点F,OFD=90,正方形ADCB中,ADC=90,OFAD,OF=AD=2,四边形OFDA为平行四边形,OFD=90,平行四边形OFDA为矩形,DAAO,正方形ABCD中,DAAB,O,A,B三点在同一条直线上;EAOB,OEB=AOE,EOABOE,=,OE2=OAOB,OA(2+OA)=4,解得:OA=1,OA0,OA=1;方法二:在RtOAE中,cosEOA=,在RtEOB中,cosEOB=,=,解得:OA=1,OA0,OA=1;方法三:OEEB,EAOB,由射影定理,得OE2=OAOB,OA(2+OA)=4,解得:OA=1,OA0,OA=1;(2)如图3,设MON=n,S扇形MON=22=n(cm2),S随n的增大而增大,MON取最大值时,S扇形MON最大,当MON取最小值时,S扇形MON最小,过O点作OKMN于K,MON=2NOK,MN=2NK,在RtONK中,sinNOK=,NOK随NK的增大而增大,MON随MN的增大而增大,当MN最大时MON最大,当MN最小时MON最小,当N,M,A分别与D,B,O重合时,MN最大,MN=BD,MON=BOD=90,S扇形MON最大=(cm2),当MN=DC=2时,MN最小,ON=MN=OM,NOM=60,S扇形MON最小=(cm2),S扇形MON【2014/23】解:(1)四边形ABCD是矩形,ADH=90,DH=DA,DAH=DHA=45,HAE=45,HA=HG,HAE=HGA=45;故答案为:45;分两种情况讨论:第一种情况:HAG=HGA=45;AHG=90,由折叠可知:HAE=F=45,AHE=FHE,EFHG,FHG=F=45,AHF=AHGFHG=45,即AHE+FHE=45,AHE=22.5,此时,当B与G重合时,a的值最小,最小值是2;第二种情况:EFHG,HGA=FEA=45,即AEH+FEH=45,由折叠可知:AEH=FEH,AEH=FEH=22.5,EFHG,GHE=FEH=22.5,AHE=90+22.5=112.5,此时,当B与E重合时,a的值最小,设DH=DA=x,则AH=CH=x,在RtAHG中,AHG=90,由勾股定理得:AG=AH=2x,AEH=FEH,GHE=FEH,AEH=GHE,GH=GE=x,AB=AE=2x+x,a的最小值是=2+;(2)如图:过点H作HQAB于Q,则AQH=GOH=90,在矩形ABCD中,D=DAQ=90,D=DAQ=AQH=90,四边形DAQH为矩形,AD=HQ,设AD=x,GB=y,则HQ=x,EG=2y,由折叠可知:AEH=FEH=60,FEG=60,在RtEFG中,EG=EFcos60,EF=4y,在RtHQE中,EQ=x,QG=QE+EG=x+2y,HA=HG,HQAB,AQ=GQ=x+2y,AE=AQ+QE=x+2y,由折叠可知:AE=EF,x+2y=4y,y=x,AB=2AQ+GB=2(x+2y)+y=x,a=【2015/23】解:(1)EF是O的直径,FDE=90;(2)四边形FACD是平行四边形理由如下:四边形ABCD是菱形,ABCD,ACBD,AEB=90又FDE=90,AEB=FDE,ACDF,四边形FACD是平行四边形;(3)连接GE,如图四边形ABCD是菱形,点E为AC中点G为线段DC的中点,GEDA,FHI=FGEEF是O的直径,FGE=90,FHI=90DEC=AEB=90,G为线段DC的中点,DG=GE,=,1=21+3=90,2+4=90,3=4,FD=FI;ACDF,3=64=5,3=4,5=6,EI=EA四边形ABCD是菱形,四边形FACD是平行四边形,DE=BD=n,AE=AC=m,FD=AC=2m,EF=FI+IE=FD+AE=3m在RtEDF中,根据勾股定理可得:n2+(2m)2=(3m)2,即n=m,SO=()2=m2,S菱形ABCD=2m2n=2mn=2m2,SO:S菱形ABCD=【2016/23】解:(1)AB2+AC2=100=BC2,BAC=90,DEFABC,D=BAC=90,(2)四边形AGDH为正方形,理由:如图1,延长ED交BC于M,延长FD交BC于N,DEFABC,B=C,EFBC,E=EMC,B=EMC,ABDE,同理:DFAC,四边形AGDH为平行四边形,D=90,四边形AGDH为矩形,GHAD,四边形AGDH为正方形;当点D在ABC内部时,四边形AGDH的面积不可能最大,理由:如图2,点D在内部时(N在ABC内部或BC边上),延长GD至N,过N作NMAC于M,矩形GNMA面积大于矩形AGDH,点D在ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图3,点D在BC上,DGAC,BGDBAC,AH=8GA,S矩形AGD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论