




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2009年中考总复习(初中数学)房志远 崔尔庄晓岚中学 1.1 有理数(实数)考查重点:1 有理数、无理数、实数、非负数概念;2相反数、倒数、数的绝对值概念;3在已知中,以非负数a2、|a|、(a0)之和为零作为条件,解决有关问题。实数的有关概念 (1)实数的组成 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可), 实数与数轴上的点是一一对应的。 数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数 实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零) 从数轴上看,互为相反数的两个数所对应的点关于原点对称 (4)绝对值 从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数 实数a(a0)的倒数是(乘积为1的两个数,叫做互为倒数);零没有倒数(1)有理数例1 (1)-5的绝对值是( ) A. -5 B. 5 C. D. (2)2007年3月5日,温总理在政府工作报告中,讲述了六大民生新亮点,其中之一就是全部免除了西部地区和部分中部地区农村义务教育阶段约52000000名学生的学杂费. 这个数据保留两个有效数字用科学记数法表示为( ) A. B. C. D. (3)2008年2月4日,我国遭受特大雪灾,部分城市的平均气温情况如下表(记温度零上为正,单位:),则其中当天平均气温最低的城市是( )城市杭州福州北京哈尔滨广州平均气温-40-9.5-17.58 A. 广州 B. 福州 C. 北京 D. 哈尔滨分析:本题主要是考查学生对有理数相关概念的理解. 第(1)小题考查绝对值的意义;第(2)小题考查科学记数法;第(3)小题考查有理数的大小比较.解答:(1)B; (2)B; (3)D.例2 计算:.分析:本题主要是考查有理数的乘方运算及有理数混合运算的顺序.解答:原式.例3 观察表,寻找规律,表、表、表分别是从表中截取的一部分,其中、的值分别是( )123424683691248121612151832202425表表表表A. 20,29,30 B. 18,30,26 C. 18,20,26 D. 18,30,28分析:本题主要考查有理数运算的简单应用. 表中第一行中的数均为连续的自然数,而下面各行依次是第一行的2倍、3倍、4倍、;表中第一列中的数均为连续的自然数,依次从左往右各列的最大公约数分别是2、3、4、.解答:D.【考题选粹】1.(2007宜宾)数学家发明了一个魔术盒,当任意实数对(,)进入其中时,会得到一个新的实数:.如把(3,-2)放入其中,会得到. 现将实数对(-2,3)放入其中得到实数,再将实数对(,1)放入其中得到的数是 .2.(2007玉溪)小颖中午回家自己煮面条吃,有下面几道工序:洗锅盛水2分钟;洗菜3分钟;准备面条及佐料2分钟;用锅把水烧开7分钟;用烧开的水煮面条和菜3分钟. 以上各道工序,除外,一次只能进行一道工序,则小颖要将面条煮好,最少用 分钟.1.2 有理数(实数)(2)实数例1 (1)下列实数:,3.14159,中,无理数有( ) A. 1个 B. 2个 C. 3个 D. 4个 (2)下列语句:无理数的相反数是无理数;一个数的绝对值一定是非负数;有理数比无理数小;无限小数不一定是无理数. 其中正确的是( ) A. B. C. D.分析:本题主要是考查学生对无理数与实数概念的理解. 解答:(1)C; (2)C.例2 计算:.分析:本题主要是考查零指数幂、负指数幂及算术平方根的化简与运算.解答:原式.例3 我国劳动法对劳动者的加班工资作出了明确规定:春节长假期间,前3天是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的300%支付加班工资;后4天是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资. 小王由于工作需要,今年春节的初一、初二、初三共加班三天(春节长假从十二月卅日开始). 如果小王的月平均工资为2800元,那么小王加班三天的加班工资应不低于 元.分析:本题主要考查学生灵活应用实数运算的相关知识解决实际问题的能力.要注意的是今年的法定假期共有11天,因此日工资标准的计算方法是:.解答:(元).【考题选粹】1.(2007内江)若,均为整数,且当时,代数式的值为0,则的算术平方根为 .2.(2007嘉兴)计算:.1 第一排2 3 第二排4 5 6 第三排7 8 9 10 第四排3.(2007重庆)将正整数按如右图所示的规律排列下去. 若用有序实数对(,)表示第排、从左到右第个数,如(4,3)表示实数9,则(7,2)表示的实数是 .【自我检测】一、考查题型:1 1的相反数的倒数是2 已知a+3|+0,则实数(a+b)的相反数3 数314与的大小关系是4 和数轴上的点成一一对应关系的是5 和数轴上表示数3的点A距离等于25的B所表示的数是6 在实数中,0, ,314, 无理数有()(A)1个(B)2个(C)3个(D)4个7一个数的绝对值等于这个数的相反数,这样的数是()(A)非负数(B)非正数(C)负数(D)正数8若x3,则x3等于()(A)x3(B)x3(C)x3(D)x39下列说法正确是()(A) 有理数都是实数 (B)实数都是有理数(B) 带根号的数都是无理数(D)无理数都是开方开不尽的数10实数在数轴上的对应点的位置如图,比较下列每组数的大小:(1) c-b和d-a (2) bc和ad 11我国数学家刘徽,是第一个找到计算圆周率方法的人,他求出的近似值是3.1416,如果取3.142是精确到位,它有个有效数字,分别是 。1.5972精确到百分位的近似数是;我国的国土面积约为9600000平方干米,用科学计数法表示为平方干米。12我国1990年的人口出生数为23784659人。保留三个有效数字的近似值是 人。13由四舍五入法得到的近似数3.10104,它精确到位。这个近似值的有效数字是。142的相反数与倒数的和的绝对值等于。二、考点训练:1判断题:(1)如果a为实数,那么a一定是负数;()(2)对于任何实数a与b,|ab|=|ba|恒成立;()(3)两个无理数之和一定是无理数;()(4)两个无理数之积不一定是无理数;()(5)任何有理数都有倒数;()(6)最小的负数是1;()(7)a的相反数的绝对值是它本身;()(8)若|a|=2,|b|=3且ab0,则ab=1;()2把下列各数分别填入相应的集合里|3|,213,1234,,0,sin60, , ()0,32,ctg45,1.2121121112中 无理数集合负分数集合 整数集合非负数集合3已知1x2,则|x3|+等于()(A)2x(B)2(C)2x(D)24下列各数中,哪些互为相反数?哪些互为倒数?哪些互为负倒数?3, 1, 3, 03, 31, 1 +, 3互为相反数: 互为倒数: 互为负倒数: 5已知、是实数,且(X)2和2互为相反数,求,y的值6,b互为相反数,c,d互为倒数,m的绝对值是2,求+4m-3cd= 。7已知0,求= 。三、解题指导:1下列语句正确的是()(A)无尽小数都是无理数(B)无理数都是无尽小数(C)带拫号的数都是无理数(D)不带拫号的数一定不是无理数。2和数轴上的点一一对应的数是()(A)整数 (B)有理数 (C)无理数(D)实数3零是()(A) 最小的有理数 (B)绝对值最小的实数(C)最小的自然数 (D)最小的整数4.如果a是实数,下列四种说法:(1)2和都是正数,(2),那么一定是负数,(3)的倒数是,(4)和的两个分别在原点的两侧,其中正确的是()(A)0(B)1(C)2(D)35比较下列各组数的大小:(1) (2) (3)ab0时, 6若a,b满足=0,则的值是 7实数a,b,c在数轴上的对应点如图,其中O是原点,且|a|=|c|(1) 判定a+b, a+c, c-b的符号(2) 化简|a|-|a+b|+|a+c|+|c-b|8已知|a|8,|b|2,|ab|=ba,则a+b的值是()(A) 10(B)6(C)6或10(D)109绝对值小于8的所有整数的和是( )(A)0 (B)28 (C)28 (D)以上都不是10由四舍五入法得到的近似数4.9万精确到( )(A)万位 (B)千位 (C)十分位 (D)千分位11近似数1.30所表示的准确数A的范围是()(A)1.25A1.35(B)1.20A1.30(C)1.295A1.305(D)1.300A1.30512数轴上点A表示数1,若AB3,则点B所表示的数为 13已知x0,且y|x|,用连结x,x,|y|,y。14最大负整数、最小的正整数、最小的自然数、绝对值最小的实数各是什么?15绝对值、相反数、倒数、平方数、算术平方根、立方根是它本身的数各是什么?16把下列语句译成式子:(1)a是负数;(2)a、b两数异号;(3)a、b互为相反数;(4)a、b互为倒数;(5)x与y的平方和是非负数;(6)c、d两数中至少有一个为零 ;(7)a、b两数均不为0。17.数轴上作出表示,的点。四独立训练:10的相反数是,3的相反数是, 的相反数是;的绝对值是,0的绝对值是,的倒数是2数轴上表示32的点它离开原点的距离是。A表示的数是,且AB,则点B表示的数是。3,(1),01313,2cos60, 31 ,1101001000 (两1之间依次多一个0),中无理数有,整数有,负数有。4. 若a的相反数是27,则a| ;5若|a|,则a= 5若实数x,y满足等式(x3)24y0,则xy的值是6实数可分为() (A)正数和零(B)有理数和无理数(C)负数和零 (D)正数和负数7若2a与1a互为相反数,则a等于()(A)1 (B)1 (C) (D)8当a为实数时,=a在数轴上对应的点在()(C) 原点右侧(B)原点左侧(C)原点或原点的右侧(D)原点或原点左侧9代数式的所有可能的值有()(A)2个(B)3个(C)4个(D)无数个10已知实数a、b在数轴上对应点的位置如图(1)比较ab与a+b的大小(2)化简|ba|+|a+b|11实数、在数轴上的对应点如图所示,其中试化简:212已知等腰三角形一边长为,一边长,且(2)2920 。求它的周长。13若3,5为三角形三边,化简:1.3 整式知识点代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、正整数指数幂、零指数幂、负整数指数幂。考查重点1代数式的有关概念 (1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子单独的一个数或者一个字母也是代数式 (2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值 求代数式的值可以直接代入、计算如果给出的代数式可以化简,要先化简再求值(3)代数式的分类2整式的有关概念 (1)单项式:只含有数与字母的积的代数式叫做单项式 对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。 (2)多项式:几个单项式的和,叫做多项式对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析(3)多项式的降幂排列与升幂排列 把一个多项式技某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列 把个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列, 给出一个多项式,要会根据要求对它进行降幂排列或升幂排列 (4)同类项所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷 要会判断给出的项是否同类项,知道同类项可以合并即 其中的X可以代表单项式中的字母部分,代表其他式子。 3整式的运算 (1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接整式加减的一般步骤是: (i)如果遇到括号按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉括号里各项都改变符号 (ii)合并同类项: 同类项的系数相加,所得的结果作为系数字母和字母的指数不变 (2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质: 多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加 多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加 遇到特殊形式的多项式乘法,还可以直接算: (3)整式的乘方 单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式。 单项式的乘方要用到幂的乘方性质与积的乘方性质: 多项式的乘方只涉及 例1 (1)已知整式与是同类项,那么,的值分别是( ) A. 2,-1 B. 2,1 C. -2,-1 D. -2,1 (2)下列运算中正确的是( ) A. B. C. D. (3)如果,那么代数式的值是 .分析:本题主要是考查同类项的概念和整式的加法、乘法和正整数指数幂的运算. 解答:(1)A; (2)C; (3)5.例2 (1)王老板以每枝元的单价买进玫瑰花100枝. 现以每枝比进价多两成的价格卖出70枝后,再以每枝比进价低元的价格将余下的30枝玫瑰花全部卖出,则王老板的全部玫瑰花共卖了 元(用含,的代数式表示). (2)如图3-1所示,用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案: 第4个图案中有白色纸片 张;第个图案中有白色纸片 张.分析:本题主要考查列代数式表示数量关系,第(1)题的关键是弄清前70枝玫瑰花的单价和后30枝的单价分别是多少;第(2)题的关键是要发现图案中的规律:第一个图形有4张白色纸片,以后每个图形都比前一个图形多3张白色纸片.解答:(1). (2)13; .例3 先化简,再求值:,其中.分析:本题主要考查乘法公式的灵活应用及整式的化简求值.解答这一类题目时,一般应先将整式化简,然后再将字母的值代入计算.解答:原式. 当时,原式.【考题选粹】1.(2006济宁)能被下列数整除的是( ) A. 3 B. 5 C. 7 D. 92.(2007淄博)根据以下10个乘积,回答问题:;. (1)试将以上各乘积分别写成一个“22”(两数平方差)的形式,并写出其中一个的思考过程; (2)将以上10个乘积按照从小到大的顺序排列起来; (3)试由(1)、(2)猜测一个一般性的结论(不要求证明).3、设P是关于x的五次多项式,Q是关于x的三次多项式,则( )(A)P+Q是关于的八次多项式 (B)P-Q是关于的二次多项式(C)PQ是关于的八次多项式 (D)是关于的二次多项式4.下列各式中,正确的是( )(A)a3+a3=a6 (B)(3a3)2=6a6 (C)a3a3=a6 (D)(a3)2=a65.用代数式表示:(1)a的绝对值的相反数与b的和的倒数; (2)x平方与y的和的平方减去x平方与y的立方的差;6.的系数是 ,是 次单项式;7.多项式3x216x54x3是 次 项式,其中最高次项是 ,常数项是 ,三次项系数是 ,按x的降幂排列 ;8.如果3m7xny+7和-4m2-4yn2x是同类项,则x= ,y= ;这两个单项式的积是。9.下列运算结果正确的是( )2x3-x2=x x3(x5)2=x13 (-x)6(-x)3=x3 (0.1)-210-1=10(A) (B) (C) (D)考查训练:10、代数式a21,0,x+,m,,3b中单项式是 ,多项式是 ,分式是 。11、是 次单项式,它的系数是 。12、多项式3yx216y2x54yx3是 次 项式,其中最高次项是 ,常数项是 ,三次项系数是 ,按x的降幂排列为 。13、(A)(a3b)2(ab2)3=-a9b8 (B) (a2b3)3(ab2)3=a3b3(C)(a3)2(b2)3=a6b6 (D)(a3)2(b2)33=a18b1814、计算:33(34)(23)215已知代数式3226的值为8,求代数式21的值16设2,求的值。17、代数式是( )(A)整式 (B)分式 (C)单项式 (D)无理式18、如果3x7-myn+3和4x14my2n是同类项,那么m,n的值是( )(A)m=3,n=2 (B) m=2,n=3 (C) m=2,n=3 (D) m=3,n=21.4 因式分解因式分解知识点 多项式的因式分解,就是把一个多项式化为几个整式的积分解因式要进行到每一个因式都不能再分解为止分解因式的常用方法有: (1)提公因式法 如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式 (2)运用公式法,即用 写出结果 (3)十字相乘法对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足 a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则 (4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.(5)求根公式法:如果有两个根X1,X2,那么 例1 (1)在一次数学课堂练习中,小聪做了以下4道因式分解题,你认为小聪做得不够完整的一道题是( ) A. B. C. D. (2)因式分解的结果是( ) A. B. C. D.分析:本题主要是考查因式分解的概念和因式分解一般思考顺序,强调因式分解一定要分解到结果中的每个因式都不能再分解为止. 解答:(1)A; (2)B.例2 利用因式分解说明:能被120整除.分析:要说明能被120整除,关键是通过因式分解得到含有因数120,可将化为同底数形式,然后利用提公因式法分解因数.解答: , 能被120整除.例3 在日常生活中经常需要密码,如到银行取款、上网等. 有种用“因式分解”法产生的密码方便记忆,原理是:如对于多项式,因式分解的结果是,若取,则各因式的值分别是:,于是就可以把“018162”作为一个六位数的密码. 同理,对于多项式,若取,则产生的密码是: (写出一个即可).分析:本题是因式分解的知识在实际生活中的简单应用. 解答时只需要先对多项式进行因式分解,再求各因式的值就可以了.解答:,当,时,各因式的值分别是:,所以密码可以为101030(也可以为103010或301010).【考题选粹】1.(2006南通)已知,其中. (1)求证:,并指出与的大小关系; (2)指出与的大小关系,并说明理由.2.(2007临安)已知、是的三边,且满足,判断的形状. 阅读下面的解题过程: 解:由 得 , 即 , , 是直角三角形. 试问:以上解题过程是否正确? . 若不正确,请指出错在哪一步?(填代号) ;错误原因是 ;本题的正确结论应该是 .1.5 分式考查重点与常见题型:1考查整数指数幂的运算,零运算,有关习题经常出现在选择题中,如:下列运算正确的是( )(A)-40 =1 (B) (-2)-1= (C) (-3m-n)2=9m-n (D)(a+b)-1=a-1+b-12.考查分式的化简求值。在中考题中,经常出现分式的计算就或化简求值,有关习题多为中档的解答题。注意解答有关习题时,要按照试题的要求,先化简后求值,化简要认真仔细,如: 化简并求值:. +(2),其中x=cos30,y=sin90知识要点1分式的有关概念 设A、B表示两个整式如果B中含有字母,式子就叫做分式注意分母B的值不能为零,否则分式没有意义 分子与分母没有公因式的分式叫做最简分式如果分子分母有公因式,要进行约分化简2、分式的基本性质 (M为不等于零的整式)3分式的运算 (分式的运算法则与分数的运算法则类似) (异分母相加,先通分); 4零指数 5负整数指数 注意正整数幂的运算性质 可以推广到整数指数幂,也就是上述等式中的m、 n可以是O或负整数【考点例解】例1 (1)在函数中,自变量的取值范围是( ) A. B. C.且 D.且. (2)若分式的值为零,则的值为 .(3)下列分式的变形中,正确的是( ) A. B. C. D.分析:本题主要考查分式的概念与分式的基本性质. 在分式中,要使分式有意义,分式的分母要不为零;要使分式值为0,则要求分子的值为0且分式有意义.解答:(1)B; (2); (3)C.例2 先化简:,再选择一个恰当的的值代入求值.分析:本题主要考查分式的化简和分式有意义的条件. 在分式化简中,经常可以把分式的除法改为乘法,再利用“分解约分”法进行化简. 在本题中的不能取0和1.解答:原式,当时,原式3.例3 (1)已知一个正分数,如果分子、分母同时增加1,分数的值是增大减小?请证明你的结论;(2)若正分数中分子和分母同时增加2,3,(整数0),情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定,民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板的比应不小于10%,并且这个比值越大,住宅的采光条件越好. 问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.分析:本题考查了分式的大小比较,并要求利用有关知识解决实际问题. 解题的关键是理解题意,得到正确的结论.解答:(1)正分数中,若分子、分母同时增加1,分数的值增大,证明如下: , , , 即 . (2)正分数中分子和分母同时增加2,3,(整数0)时,分式的值也增大. (3)住宅的采光条件变好,理由略.【考题选粹】1.(2007东营)小明在考试时看到一道这样的题目:“先化简,再求值.”小明代入某个数后求得值为3. 你能确定小明代入的是哪一个数吗?你认为他代入的这个数合适吗?为什么?2.(2007嘉兴)解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题. 例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”等等. (1)设,求与的值;(2)提出(1)的一个“逆向”问题,并解答这个问题.3、 中分式有4当x=-时, 分式的值为零;5当x取-值时,分式有意义;6已知是恒等式,则A,B。7化简()8先化简后再求值:+,其中x= 9已知2,求的值10.化简(1)1+ (2) (3)a+(a-) (a-2)(a+1)(4)。已知b(b1)a(2ba)=b+6,求ab的值 (5).(1+)(x4+)3 (1) (6). 已知x+=,求 的值 (7)若1,求证:11已知m25m+1=o 求(1) m3+ (2)m的值12.当x=1998,y=1999时, 求分式 的值 13已知=,求 的值 (9)求的值。1.6 二次根式内容分析 1二次根式的有关概念 (1)二次根式 式子叫做二次根式注意被开方数只能是正数或O (2)最简二次根式 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式 (3)同类二次根式 化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式 2二次根式的性质 3二次根式的运算 (1)二次根式的加减 二次根式相加减,先把各个二次根式化成最简二次根式,再把同类三次根式分别合并 (2)三次根式的乘法 二次根式相乘,等于各个因式的被开方数的积的算术平方根,即 二次根式的和相乘,可参照多项式的乘法进行 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式 (3)二次根式的除法 二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分)把分母的根号化去,叫做分母有理化【考点例解】例1 (1)若代数式在实数范围内有意义,则的取值范围是( ) A. B. C. D. (2)若为实数,则下列各式中一定有意义的是( ) A. B. C. D.分析:本题主要考查二次根式的概念,即在二次根式中,被开方数必须是非负数.解答:(1)B; (2)B.例2 (1)计算:. (2)比较大小: .分析:本题主要考查二次根式性质的灵活应用和二次根式的混合运算. 第(1)题中,可先利用二次根式的性质进行化简,然后利用实数的运算法则进行计算;第(2)题要先逆用性质:,再进行两个数的大小比较.解答:(1)原式. (2) ,且, .例3 已知的三边,满足,则为( ). A. 等腰三角形 B. 正三角形 C. 直角三角形 D. 等腰直角三角形分析:本题考查了二次根式的非负性,即:在二次根式中,且. 解答:将原式变形,得 . 即 . ,. . 为等边三角形,故选B.【考题选粹】1.(2006南充)已知,那么化简的正确结果是( ) A. B. C. D.2.(2007烟台)观察下列各式:,请将你发现的规律用含自然数的等式表示出来: .考查题型1下列命题中,假命题是( )(A)9的算术平方根是3 (B)的平方根是2(C)27的立方根是3 (D)立方根等于1的实数是12在二次根式, , , , 中,最简二次根式个数是( )(A) 1个 (B)2个 (C)3个 (D)4个(2)下列各组二次根式中,同类二次根式是( ) (A),3 (B)3, (C), (D),3. 化简并求值,其中a2,b241的倒数与的相反数的和列式为 ,计算结果为 5()2的算术平方根是 ,27的立方根是 ,的算术平方根是 ,的平方根是 . 第一单元综合测试(数与式)一、选择题(本题有10小题,每小题4分,共40分)1. 如果水库的水位高于标准水位3m时,记作+3m,那么低于标准水位2m时,应记作( ) A. -2m B. -1m C. +1m D. +2m2. 2007年我国某省国税系统完成税收收入为3.450651011元,也就是收入了( ) A. 345.065亿元 B. 3450.65亿元 C. 34506.5亿元 D. 345065亿元3. 若整式是一个完全平方式,那么的值是( ) A. -5 B. 7 C. -1 D. 7或 -14. 估计的大小应在( ) A. 9.19.2之间 B. 9.29.3之间 C. 9.39.4之间 D. 9.49.55. 如图1,点,在数轴上对应的实数分别是,那么,两点间的距离是( ) A. B.ABC. D.6. 下列运算中,错误的是( ) A. B. C. D.7. 某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是( ) A. 31个 B. 33个 C.35个 D.37个8. 如果代数式的值为9,则代数式的值为( ) A. 7 B. 9 C. 12 D. 189. 如图2,图中阴影部分的面积是( ) A. B. C. D.10.已知,是两个连续自然数(),且,设,那么的值是( )A.奇数 B.偶数 C.奇数或偶数 D.有理数或无理数二、填空题(本题有6小题,每小题5分,共30分)11.写出一个小于2的无理数: .12.列代数式表示:“数的2倍与10的和的二分之一”应为 .13.已知,且,则当时,代数式的值为 .14.一个矩形的面积是米2,它的一条边为米,那么它的另一边为 米.15.数学家发现一个魔术盒,当任意实数对进入时,会得到一个新的实数:.例如把(3,-2)放入其中后,就会得到32+(-2)+1=8. 现将实数对(-2,3)放入其中得到实数,再将实数对放入其中后,得到的实数是 .16.如果2007个整数,满足下列条件:,,则 .三、解答题(本题有7小题,共80分)17.(10分)计算:.18.(10分)先化简代数式:,然后选择一个使原式有意义的,值代入求值.19.(10分)观察下面一列数,探求其中的规律: , , , , (1)请在上面的横线上填出第7,8,9个数; (2)第2008个数是什么?第个数是什么?如果这一列数无限地排列下去,那么与哪个数越来越接近?20.(10分)分解因式:(1) (2)21.(12分)2007年4月18日是全国铁路第六次大提速的第一天. 这一天,小明爸爸因要出差,于是他到火车站查询列车的开行时间,下表是他从火车站带回家的最新时刻表:2007年4月18日起次列车时刻表始发站发车时间终点站到站时间A站上午8:20B站次日12:20小明爸爸找出了以前同一车次的时刻表如下:2006年3月20日次列车时刻表始发站发车时间终点站到站时间A站下午14:30B站第三日8:30比较了两张时刻表后,小明爸爸提出了下面两个问题,请你帮小明解答:(1)现在该次列车的运行时间比以前缩短了多少小时?(2)如果该次列车提速后的平均时速为200千米/小时,那么该次列车原来的平均时速为多少?(结果精确到个位)22.(14分)下面的图(1)是由边长为的正方形剪去一个边长为的小正方形后余下的图形.把图(1)剪开后,再拼成一个四边形,可以用来验证公式:.( 图(1)1)请你通过对图(1)的剪拼,画出三种不同拼法的示意图.要求:拼成的图形是四边形;在图(1)上画出剪裁线(用虚线表示);在拼出的图形上标出已知的边长.(2)选择其中的一种拼法写出验证上述公式的过程.23.(14分)设,,( 0的自然数). (1)探究:是8的倍数吗?请说明理由,并用文字语言表述你所获得的结论; (2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”. 试找出,这一列数中从小到大排列的前4个完全平方数,并求:当满足什么条件时,为完全平方数?2.1 一次方程(组)【教学目标】1.理解方程、方程组,以及方程和方程组的解的概念.2.掌握解一元一次方程和二元一次方程组的一般步骤与方法,体会“消元”的数学思想,会求二元一次方程的正整数解.3.能根据实际问题中的数量关系,列出一元一次方程或二元一次方程组来解决简单的实际问题,并能检验解的合理性.【重点难点】重点:解一元一次方程和二元一次方程组的一般步骤与方法.难点:根据实际问题中的数量关系,列出一元一次方程或二元一次方程组.【考点例解】例1 (1)若关于的一元一次方程的解是,则的值是( ) A. B. 1 C. D. 0. (2)若二元一次方程组的解为,则的值为( ) A. 1 B. 3 C. -1 D. -3 分析:本题主要考查方程和方程组的概念,以及一元一次方程和二元一次方程组的解法.解答:(1)B; (2)C.例2 已知方程组的解是,则方程组的解是 .分析:本题主要考查一元一次方程或二元一次方程组的解法和整体代换的思想. 在解答时,既可以直接求方程组的解,也可以利用整体思想,分别把和“看作”和,通过解一元一次方程来解决.解答:.例3 陈老师为学校购买运动会的奖品后,回学校向总务处王老师交帐时说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还剩余418元.”王老师算了一下说:“你肯定搞错了”.(1)王老师为什么说陈老师搞错了呢?请你用方程的知识给予解释.(2)陈老师连忙拿出购物发票进行核对,发现自己的确是弄错了,因为他还买了一个笔记本. 但笔记本的单价已经模糊不清了,只能辨认出应该是小于10元的整数. 问:笔记本的单价可能是多
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025智能设备分销代理的合同协议
- 2025年度工程材料供应合同模板
- 古诗词诵唱活动方案策划
- 咨询服务方案模板范文
- 钢结构屋面模板施工方案
- 2025年市场推广工程师劳动合同模板
- 松江区旧城改造施工方案
- 2025农产品材料供货运输合同样本
- 债务规划咨询及服务方案
- 网红瓷砖施工方案模板
- 2025年学校少先队知识应知应会题库(含答案)
- 核桃肽粉生产技术规程(征求意见稿)编制说明
- 《储能技术》课件-3.各种类型的蓄能技术
- (2025)企业首席质量官培训考核试题(附含答案)
- 工业厂区场地平整建设方案
- 2024年丽水市莲都区事业单位招聘真题
- 锂电池pack工厂安全培训课件
- DB31∕T 1545-2025 卫生健康数据分类分级要求
- 九宫格智力数独200题(题答案)版
- GB/T 5796.4-2022梯形螺纹第4部分:公差
- 智能电网-课件
评论
0/150
提交评论