免费预览已结束,剩余18页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章误差基本知识 一 误差产生的原因 测量误差主要来自以下三个方面 1 外界环境主要指观测环境中气温 气压 空气湿度和清晰度 风力以及大气折光等因素的不断变化 导致测量结果中带有误差 2 仪器仪器在加工和装配等工艺过程中 不能保证仪器的结构能满足各种几何关系 这样的仪器必然会给测量带来误差 3 观测者由于观测者感官鉴别能力所限以及技术熟练程度不同 也会在仪器对中 整平和瞄准等方面产生误差 观测条件 测量仪器 观测者和外界环境等精度观测 观测条件相同的各次观测不等精度观测 观测条件不同的各次观测测量误差按其对测量结果影响的性质 可分为系统误差和偶然误差 二 误差的分类 1 系统误差 在相同观测条件下做一系列的观测 误差在大小 正负上表现出一致性 或按一定规律变化 2 偶然误差 在相同观测条件下做一系列的观测 误差在大小 正负上表现出不一致性 从表面上看毫无规律可言 三 偶然误差的统计规律性 真误差公式 i X Li i 1 2 n 例 测量162个三角形的全部内角 此时Li Ai Bi Ci X 180 共计算出162个 把这162个 取0 2 为一个误差区间 并按其值大小和正负号排列 统计其出现在各误差区间的个数 得到 误差分布表 1 偶然误差绝对值不会超过一定的限值 2 绝对值小的误差比绝对值大的误差出现的机会多 3 绝对值相等的正负误差出现的机会相等 4 在等精度观测下偶然误差的算术平均值 随观测次数的无限增大趋于零 直方图及误差分布曲线 横轴 误差区间的大小纵轴 相对个数除以误差区间的大小小方块的面积为误差出现的相对个数 算术平均值 五 评定精度的指标 精度 误差分布的密集或离散程度 误差分布密集 误差就小 精度就高 反之误差分布离散 误差就大 精度就低 中误差及其计算1 中误差的定义在相同的观测条件下 对同一未知量进行n次观测 所得各个真误差平方的平均值 再取其平方根 称为中误差 用m表示 即 式中 为真误差 的平方和 n为观测次数 应用公式的前提 1 真值已知2 观测值等精度 同观测条件下的观测值 3 不能省略4 观测值可以为直接观测值 也可为由直接观测值导出的函数值 由改正数推求中误差 中误差的两种计算公式 2 相对误差 中误差和真误差都是绝对误差 误差的大小与观测量的大小无关 例 分别丈量了两段不同长度的距离 一段为100m 另一段为200m 但中误差皆为 0 02m相对误差的定义 中误差的绝对值与相应观测值之比 相对误差习惯于用分子为1的分数形式表示 分母愈大 表示相对误差愈小 精度也就愈高 3 极限误差 AdmissibleError 根据偶然误差的第一个特性 在一定的观测条件下 偶然误差的绝对值不会超过一定的限值 这个限值就是极限误差 简称限差 限差是偶然误差的限制值 用作观测成果取舍的标准 如果观测值的偶然误差超过限差 则认为该观测值不合格 应舍去不用 测量上常取三倍或两倍中误差作为极限误差 限 也称允许误差 即 误差传播定律 能直接观测的量 经过多次观测后 可通过真误差或改正数计算出观测值的中误差 作为评定观测值精度的标准 在实际工作中 某些未知量不可能或不便于直接进行观测 而需要由另一些直接观测量根据一定的函数关系计算出来 这些未知量即为观测值的函数 例如 在水准测量中 两点间的高差h a b 则h是直接观测值a和b的函数 在三角高程测量的计算公式中 如h D tan i L 高差h就是观测值i和 的函数在观测值中误差为已知的情况下 如何求观测值函数中误差的问题即描述观测值中误差与函数中误差之间数学关系的定律 称为误差传播定律 常用函数的中误差公式 1 量得某圆形建筑物得直径D 34 50m 其中误差 求建筑物得圆周长及其中误差 解 圆周长 算术平均值中误差 本章小结 误差产生的根源 观测条件系统误差 偶然误差及其特点 难点 中误差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(能力提升)
- 云阳县农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(预热题)
- 郑州市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(夺冠)
- 济南市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(新)
- 牡丹江市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(突破训练)
- 广西壮族自治区农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及完整答案详解一套
- 2026年宜春市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及1套参考答案详解
- 吕梁市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)有完整答案详解
- 信阳市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(夺分金卷)
- 十堰市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及参考答案详解
- 2025海南省眼科医院(中山大学中山眼科中心海南眼科医院)招聘事业编制人员27人(第1号)笔试参考题库附答案解析
- 2024年高校辅导员素质能力大赛试题(附答案)
- 虚拟数字人身份识别技术-洞察及研究
- 太阳能光伏市场增长预测报告
- 第四季度公司2025年安全生产工作会议纪要
- 2025年部编版新教材语文七年级上册教学进度安排表
- 《医学人工智能通识基础》全套教学课件
- 2025至2030中国互联网+法律行业项目调研及市场前景预测评估报告
- 样品采购及管理办法
- 游戏服饰设计
- 交通违章安全培训课件
评论
0/150
提交评论