




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1章 随机事件及其概率1排列组合 2关系运算A(BC)=(AB)C A(BC)=(AB)C (AB)C=(AC)(BC) (AB)C=(AC)(BC) ,3几何概型v (1)S是直线上的某个线段,长度为l(S),A是S的一个子集,则落在A中的概率为:P(A)=l(A)/l(S)。v (2)S是平面上的某个区域,面积为u(S), 则落在A中的概率为:P(A)=u(A)/u(S)。v (3)S是空间上的某个立体,体积为v(S), 则落在A中的概率为:P(A)=v(A)/v(S)。 甲乙两人相约在7点到8点之间在某地会面,先到者等候另一人20分钟,过时就离开。如果每个人可在指定的任一小时内任意时刻到达,试计算二人能够会面的概率。根据题意,这是一个几何概型问题,于是解:4加法公式P(A+B)=P(A)+P(B)-P(AB) 当P(AB)0时,P(A+B)=P(A)+P(B)5减法公式P(A-B)=P(A)-P(AB) 当BA时,P(A-B)=P(A)-P(B) 当A=时,P()=1- P(B)6条件概率事件B在事件A发生条件下发生的条件概率为 。7乘法公式 P(ABC)P(A)P(B|A)P(C|AB) P(AB)08独立性两个事件的独立性设事件、满足,则称事件、是相互独立的。若事件、相互独立,且,则有若事件、相互独立,则可得到与、与、与也都相互独立。必然事件和不可能事件与任何事件都相互独立. 与任何事件都互斥。多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同时满足P(ABC)=P(A)P(B)P(C)那么A、B、C相互独立。 对于n个事件类似。9伯努利概型概率P(A)=p , 发P()=1-p=q,用表示重伯努利试验中出现次的概率,。 第二章 随机变量及其分布1离散型随机变量 P(X=xk)=pk,k=1,2,, (1), (2)2连续型随机变量概率密度 (1) ;(2) 。3分布函数 1 ; 2、单调不减性:若x1x2, 则F(x1)F(x2); 3 , ; 4 右连续性: 对于离散型随机变量,; 对于连续型随机变量, 二项分布, 当时,就是(0-1)分布:P(X=1)=p, P(X=0)=q泊松分布或者P():,泊松分布为二项分布的极限分布(np=,n)。超几何分布随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。几何分布,其中p0,q=1-p。(k次试验,前k-1次失败,第k次成功)随机变量X服从参数为p的几何分布,记为G(p)。均匀分布 axb axbXU(a,b): 其他,0, xb。当ax1x2b时,X落在区间()内的概率为。指数分布 , 0, , , x2)二维随机变量的数字特征期望 函数的期望方差协方差cov(X,Y)=E(XY)-E(X)E(Y).,X与Y的方差D(X)与D(Y)也分别记为与。cov (X, Y)=cov (Y, X) cov(aX,bY)=ab cov(X,Y) cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y)相关系数如果D(X)0, D(Y)0,则称为X与Y的相关系数,记作|1,当|=1时,称X与Y完全相关:完全相关而当时,称X与Y不相关。以下五个命题是等价的:cov(X,Y)=0E(XY)=E(X)E(Y)D(X+Y)=D(X)+D(Y)D(X-Y)=D(X)+D(Y).协方差矩阵混合矩X与Y的k+l阶混合原点矩,记为k+l阶混合中心矩记为:独立和不相关(i) 若随机变量X与Y相互独立,则;反之不真。(ii) 若(X,Y)N(),则X与Y相互独立的充要条件是X和Y不相关。第五章 大数定律和中心极限定理(1)大数定律切比雪夫大数定律若X1,X2,具有相同的数学期望E(XI)=,则 伯努利大数定律当试验次数n很大时,事件A发生的频率与概率有较大判别的可能性很小,辛钦大数定律(2)中心极限定理列维林德伯格/独立同分布的中心极限随机变量X1,X2,相互独立,服从同一分布,且具有相同的数学期望和方差:棣莫弗拉普拉斯二项定理若当,则 超几何分布的极限分布为二项分布。泊松定理若当,则 其中k=0,1,2,n,。第六章 样本及抽样分布数理统计的基本概念样本函数和统计量()为样本函数,其中为一个连续函数。如果中不包含任何未知参数,则称()为一个统计量。常见统计量及其性质样本均值样本方差样本标准差样本k阶原点矩样本k阶中心矩 ,,其中为二阶中心矩。 (2)正态总体下的四大分布正态分布设为来自正态总体的一个样本,则样本函数t分布。样本函数 其中t(n-1)表示自由度为n-1的t分布。样本函数其中表示自由度为n-1的分布。F分布样本函数 其中表示第一自由度为,第二自由度为的F分布。第七章 参数估计(1)点估计矩估计样本的k阶原点矩为 这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩”的原则建立方程,即有极大似然估计样本的似然函数,简记为Ln. 为样本的似然函数。最大似然估计量。 估计量的评选标准无偏性若E ()=,则称 为的无偏估计量。 E()=E(X), E(S2)=D(X)有效性若,则称有效。一致性设是的一串估计量,如果对于任意的正数,都有 则称为的一致估计量(或相合估计量)。若为的无偏估计,且则为的一致估计。只要总体的E(X)和D(X)存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。区间估计置信区间和置信度设总体X含有一个待估的未知参数。如果我们从样本出发,找出两个统计量与,使得区间以的概率包含这个待估参数,即那么称区间为的置信区间,为该区间的置信度(或置信水平)。单正态总体的期望和方差的区间估计设为总体的一个样本,在置信度为下,我们来确定的置信区间。具体步骤如下:(i)选择样本函数;(ii)由置信度,查表找分位数;(iii)导出置信区间。已知方差,估计均值(i)选择样本函数(ii) 查表找分位数(iii)导出置信区间未知方差,估计均值(i)选择样本函数(ii)查表找分位数(iii)导出置信区间方差的区间估计(i)选择样本函数(ii)查表找分位数(iii)导出的置信区间第八章 假设检验基本步骤1)提出零假设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年阜阳颍上县人民医院引进博士研究生2人模拟试卷附答案详解(考试直接用)
- 2025年皖南医学院第二附属医院高层次招聘22人模拟试卷附答案详解
- 2025广东珠海高新区科技产业局招聘合同制职员2人模拟试卷有完整答案详解
- 浙江国企招聘2025杭州上城区文商旅投资控股集团有限公司下属企业招聘4人笔试历年参考题库附带答案详解
- 浙江国企招聘2025丽水华数广电网络有限公司招聘6人笔试历年参考题库附带答案详解
- 崇仁县2025年县属国有企业公开招聘员工【13人】笔试历年参考题库附带答案详解
- 2025黑龙江佳木斯佳和投资有限公司招聘5人笔试历年参考题库附带答案详解
- 2025陕西省人民政府国有资产监督管理委员会招聘2025+人笔试历年参考题库附带答案详解
- 2025贵州仁怀市酱香型白酒产业发展投资有限责任公司校园招聘37人笔试历年参考题库附带答案详解
- 2025西北有色金属研究院西安欧中材料科技有限公司招聘笔试历年参考题库附带答案详解
- 劳动课冰箱清洁课件
- 2025年公共基础知识考试试题及参考答案详解
- 建筑设计数字化协同工作方案
- 新入行员工安全教育培训课件
- 原生家庭探索课件
- 人教版音乐八年级上册-《学习项目二探索旋律结构的规律》-课堂教学设计
- 《中国人民站起来了》课件 (共50张)2025-2026学年统编版高中语文选择性必修上册
- 中国企业供应链金融白皮书(2025)-清华五道口
- 医院常用消毒液的使用及配置方法
- 2022英威腾MH600交流伺服驱动说明书手册
- 分期支付欠薪协议书范本
评论
0/150
提交评论