




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Response LetterPaper number: NODY-D-15-00088Paper title: Event-Triggered Control for Multi-Agent Network with Limited Digital CommunicationAuthors: Dear Editor-in-chief, Associate Editor and Anonymous Reviewers, We would like to thank you for your efforts in reviewing our manuscript and providing many helpful comments and suggestions. Those comments are all valuable and very helpful for revising and improving our paper, as well as the important guiding significance to our researches. We have studied comments very carefully. Based on your criticisms, comments and suggestions, we have revised the manuscript accordingly. The details are explained below, where the number of the response is in correspondence with the number of the reviewers comments and suggestions. Reply to the Associate EditorAccording to the AEs and reviewers criticisms, comments and suggestions, we have modified the manuscript carefully. The description of a substantial revision and the detailed points to the review reports can be seen in the following responses and in the new revision. Moreover, we have also checked other derivations throughout the paper and some necessary explanations are also included.Reply to Referees #1We would like to thank the reviewers great efforts in reading our manuscript and for your constructive comments and suggestions. Our responses to the comments and suggestions are listed as follows: 1. Consensus with communication constraints is indeed a quite interesting topic in field of multi-agent systems, the following work on consensus of second-order multi-agent systems may be briefly mentioned: Int. J. Robust and Nonlinear Control, 22(2):170-182, 2012.Reply: The relevant works of communication constraints in Int. J. Robust and Nonlinear Control is really worth mentioning, and this reference has been added in new revision.2. The communication topology is assumed to be undirected, whether it is possible to do some further work on directed or switching topologies. One more remark may be added to the manuscript to state this issue.Reply: This suggestion is very nice and reasonable. The directed and switching topologies cases will be our future works, and the remark has been provided in the future works part of conclusion.Reply to Referees #2We would like to thank the reviewers great efforts in reading our manuscript and for your constructive comments and suggestions. Our responses to the comments and suggestions are listed as follows: 1. The proof of Theorem 1 is not clear. It didnt show what is the convergence set for all agents, that is, should be verified. Its very important obviously.Reply: This suggestion is very helpful, and I have rewritten the Theorem 1. Im sure the new version is much clearer than the old one.2. There are some errors in the proof of Theorem 1. For example,(i) How to determine l in the last line of formula (16). There is no any constraint for l.(ii) The same problem appeared in the last line and previous line of formula (18).Reply: I am very sorry for my carelessness. The last expression in formula (16) and (18) should be replaced by . Now the total four mistakes in formula (16) and (18) have been corrected in revised version. To avoid the similar mistakes, I have also checked the other derivations throughout the manuscript. Again thanks for your carefulness and tolerance.3. What is the function of parameter in the event triggering condition (8). Which performance does it affect? How to choose this parameter according to the demands of performance? The analysis should be given.Reply: This suggestion is very reasonable. Actually, this parameters main function is to adjust the performance of event triggering mechanism. Each agents event frequency has a great relationship with the parameter . The larger, the event times are less and the performance is better. To obtain the best performance, we directly set in revised version, i.e., we no longer define this parameter explicitly in revised version.Reply to Referees #3 We would like to thank the reviewers great efforts in reading our manuscript and for your constructive comments and suggestions. Our responses to the comments and suggestions are listed as follows:1. The main advantage of this work should be further strengthened in Introduction.Reply: Sincerely thanks for your helpful suggestion. I have rewritten the contribution part in Introduction, and Im sure the new version is much clearer than the old one.2. What are the novelty in the proposed scheme in this paper?Reply: There are four main novelties in this paper. First, we designed an integrated communication framework for digital multi-agent network, in which the event-triggered strategy and dynamic encode/decode scheme play an important role in communication process. Second, a distributed triggering condition that only depends on local state information of neighbor agents is developed and the corresponding consensus analysis is provided. Third, we gave the specific communication algorithm considering dynamic encode/decode scheme under event-triggered strategy, and we also proposed a self-adaptive quantization algorithm that builds a connection between quantization level and quantization factor. Last, we proposed an improved communication strategy named one-bit quantized scheme such that the global consensus can still be achieved based on only one bit information exchange between agents at each quantized transmission.3. In this Reviewers opinion, in (6), hate_i(t) is infeasible since there is both $t$ and $t_k$. The authors should explain this point.Reply: Actually, it is feasible. Here we give the detailed explanation. Just like the statements before the Algorithm 1, we assume each agent has a memory that can store its own instant state , state estimate , and its all neighbor state estimates . Furthermore, the initial states of all agents are given as , the all initial event time and all state estimates are initialized to 0. Then the Algorithm 1 can be carried out step by step. According to the Algorithm 1 and Remark 1, we can know that the work time of encoder/decoder is only the event time of relevant agents, once the event is triggered, then the corresponding measurement s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全员列年考及答案
- 低碳城市渣土车智能监控与污染控制技术
- 2025年新能源汽车智能座舱智能座椅加热通风功能研究报告:用户体验与技术创新
- 2025年工程电梯常识题库及答案
- 多个应急预案演示(3篇)
- 堵门岗应急预案(3篇)
- 语文专业能力面试题及答案
- DB65T 4521-2022 孜然芹栽培技术规程
- DB65T 4448-2021 公路沥青路面沥青混合料拌和质量动态监测规范
- 电气春节应急预案(3篇)
- 陶瓷-课件商周至汉代瓷器
- 覆岩离层注浆减沉技术研究的新进展课件
- 折纸校本课程纲要
- 新汉语水平考试 HSK(四级)
- 村卫生室健康扶贫督导考核表
- DB37T 3842-2019 铁矿绿色矿山建设规范
- 《光电显示技术》OLED原理
- 诊断学基础知识常见症状ppt课件
- 丰田安全管理(安全班组活动)(课堂PPT)
- ISOIEC17025实验室质量管理体系漫谈经验
- 外研版六年级上册英语学案
评论
0/150
提交评论