




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2012高考试题分类汇编:数列一、选择题1.【2012高考安徽文5】公比为2的等比数列 的各项都是正数,且 =16,则=(A) 1 (B)2 (C) 4 (D)8【答案】A 2.【2012高考全国文6】已知数列的前项和为,,则(A) (B) (C) (D) 【答案】B 3.【2012高考新课标文12】数列an满足an+1(1)n an 2n1,则an的前60项和为(A)3690 (B)3660 (C)1845 (D)1830【答案】D4.【2012高考辽宁文4】在等差数列an中,已知a4+a8=16,则a2+a10=(A) 12 (B) 16 (C) 20 (D)24【答案】B【点评】本题主要考查等差数列的通项公式、同时考查运算求解能力,属于容易题。5.【2012高考湖北文7】定义在(-,0)(0,+)上的函数f(x),如果对于任意给定的等比数列an,f(an)仍是等比数列,则称f(x)为“保等比数列函数”。现有定义在(-,0)(0,+)上的如下函数:f(x)=x;f(x)=2x;f(x)=ln|x |。则其中是“保等比数列函数”的f(x)的序号为A. B. C. D.7. 【答案】C 6.【2012高考四川文12】设函数,数列是公差不为0的等差数列,则( )A、0 B、7 C、14 D、21 【答案】D.7.【2102高考福建文11】数列an的通项公式,其前n项和为Sn,则S2012等于 A.1006 B.2012 C.503 D.0【答案】A 8.【2102高考北京文6】已知为等比数列,下面结论种正确的是(A)a1+a32a2 (B) (C)若a1=a3,则a1=a2(D)若a3a1,则a4a2【答案】B 9.【2102高考北京文8】某棵果树前n年的总产量Sn与n之间的关系如图所示,从目前记录的结果看,前m年的年平均产量最高,m的值为(A)5(B)7(C)9(D)11【答案】C 二、填空题10.【2012高考重庆文11】首项为1,公比为2的等比数列的前4项和 【答案】15 11.【2012高考新课标文14】等比数列an的前n项和为Sn,若S3+3S2=0,则公比q=_【答案】 12.【2012高考江西文13】等比数列an的前n项和为Sn,公比不为1。若a1=1,且对任意的都有an2an1-2an=0,则S5=_。 【答案】11 13.【2012高考上海文7】有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为,则 【答案】。【解析】由题意可知,该列正方体的体积构成以1为首项,为公比的等比数列,+=,。14.【2012高考上海文14】已知,各项均为正数的数列满足,若,则的值是 【答案】。 15.【2012高考辽宁文14】已知等比数列an为递增数列.若a10,且2(a n+a n+2)=5a n+1 ,则数列an的公比q = _.【答案】2 16.【2102高考北京文10】已知an为等差数列,Sn为其前n项和,若,S2=a3,则a2=_,Sn=_。【答案】,17.【2012高考广东文12】若等比数列满足,则 .【答案】三、解答题18.【2012高考浙江文19】(本题满分14分)已知数列an的前n项和为Sn,且Sn=,nN,数列bn满足an=4log2bn3,nN.(1)求an,bn;(2)求数列anbn的前n项和Tn.【解析】(1) 由Sn=,得当n=1时,;当n2时,nN.由an=4log2bn3,得,nN.(2)由(1)知,nN所以,nN.19.【2012高考江苏20】(16分)已知各项均为正数的两个数列和满足:,(1)设,求证:数列是等差数列;(2)设,且是等比数列,求和的值【答案】解:(1),。 。 。 数列是以1 为公差的等差数列。(2),。 。()设等比数列的公比为,由知,下面用反证法证明 若则,当时,与()矛盾若则,当时,与()矛盾。 综上所述,。,。 又,是公比是的等比数列。 若,则,于是。又由即,得。 中至少有两项相同,与矛盾。 。 。【考点】等差数列和等比数列的基本性质,基本不等式,反证法。【解析】(1)根据题设和,求出,从而证明而得证。 (2)根据基本不等式得到,用反证法证明等比数列的公比。从而得到的结论,再由知是公比是的等比数列。最后用反证法求出。20【2012高考四川文20】(本小题满分12分) 已知数列的前项和为,常数,且对一切正整数都成立。()求数列的通项公式;()设,当为何值时,数列的前项和最大? 【解析】21.【2012高考湖南文20】(本小题满分13分)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为an万元.()用d表示a1,a2,并写出与an的关系式;()若公司希望经过m(m3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).【答案】【解析】()由题意得,.()由()得.整理得.由题意,解得.故该企业每年上缴资金的值为缴时,经过年企业的剩余资金为元.【点评】本题考查递推数列问题在实际问题中的应用,考查运算能力和使用数列知识分析解决实际问题的能力.第一问建立数学模型,得出与an的关系式,第二问,只要把第一问中的迭代,即可以解决.22.【2012高考重庆文16】(本小题满分13分,()小问6分,()小问7分)已知为等差数列,且()求数列的通项公式;()记的前项和为,若成等比数列,求正整数的值。 【解析】()设数列 的公差为d,由题意知 解得所以()由()可得 因 成等比数列,所以 从而 ,即 解得 或(舍去),因此 。23.【2012高考陕西文16】已知等比数列的公比为q=-.(1)若=,求数列的前n项和;()证明:对任意,成等差数列。【答案】24.【2012高考湖北文20】(本小题满分13分)已知等差数列an前三项的和为-3,前三项的积为8.(1) 求等差数列an的通项公式;(2)若a2,a3,a1成等比数列,求数列错误!不能通过编辑域代码创建对象。的前n项和。20. 【答案】 【解析】本题考查等差数列的通项,求和,分段函数的应用等;考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式求解;有时需要利用等差数列的定义:(为常数)或等比数列的定义:(为常数,)来判断该数列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.来年需注意等差数列或等比数列的简单递推或等差中项、等比中项的性质.25.【2012高考天津文科18】 (本题满分13分)已知a1是等差数列,其前项和为,bn是等比数列,且a1=b1=2,sa-sb=10(I)求数列an与bn的通项公式;(II)记Ta=a1b1+a2+b1+.an+bn,nNn,证明TN-8=an-1bn-1,(nna,n2)。【答案】26.【2012高考山东文20】 (本小题满分12分)已知等差数列的前5项和为105,且.()求数列的通项公式;()对任意,将数列中不大于的项的个数记为.求数列的前m项和【答案】 (I)由已知得:解得,所以通项公式为.(II)由,得,即.,是公比为49的等比数列,.27.【2012高考全国文18】(本小题满分12分)(注意:在试题卷
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高校新生入学教育方案及活动记录
- 快递行业配送路线优化案例分析
- 农业社区发展投资协议
- 仓储物流设备维护维修协议
- 电商维权委托协议范本
- 2025内蒙古通辽市工会社会工作者招聘10人考试模拟试题及答案解析
- 2025年湖南衡阳常宁市市属事业单位急需紧缺专业技术人才引进20人考试模拟试题及答案解析
- 互联网金融保险平台开发与运营协议
- 2025河南郑州通信科技中专招老师42人考试参考题库及答案解析
- 2025浙江温州市不动产登记服务中心招聘4人考试模拟试题及答案解析
- 中国大模型落地应用研究报告2025
- 2025年中国汽车摆臂行业投资前景及策略咨询研究报告
- 2025至2030中国甲氧基乙酸甲酯行业发展趋势分析与未来投资战略咨询研究报告
- 小区住宅景观设计要点解析
- 江苏手术分级管理制度
- 呼吸机管道安全管理体系
- 2025年重庆市中考英语试卷真题(含标准答案及解析)
- 2025年中考历史总复习中国古代史专题复习资料
- 单用途卡资金管理制度
- 酒驾科目一考试模拟试题及答案
- 林区施工防火管理制度
评论
0/150
提交评论